OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11597–11604

Fabrication of binary Fresnel lenses in PMMA by femtosecond laser surface ablation

Rebeca Martínez Vázquez, Shane M. Eaton, Roberta Ramponi, Giulio Cerullo, and Roberto Osellame  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11597-11604 (2011)
http://dx.doi.org/10.1364/OE.19.011597


View Full Text Article

Enhanced HTML    Acrobat PDF (1298 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the fabrication of binary Fresnel lenses by femtosecond laser surface ablation of poly(methyl methacrylate) (PMMA) substrates. Tight focusing of the laser pulses produced a minimum ablated feature size of 600 nm, enabling the creation of lenses with numerical apertures as high as 0.5 and focal lengths ranging from 500 µm to 5 mm. A precise control of the ablation depth allowed the achievement of a 30% focusing efficiency, close to the maximum theoretical value for this kind of lenses.

© 2011 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.5470) Materials : Polymers
(320.2250) Ultrafast optics : Femtosecond phenomena
(050.1965) Diffraction and gratings : Diffractive lenses

ToC Category:
Diffraction and Gratings

History
Original Manuscript: April 11, 2011
Revised Manuscript: April 29, 2011
Manuscript Accepted: April 29, 2011
Published: June 1, 2011

Citation
Rebeca Martínez Vázquez, Shane M. Eaton, Roberta Ramponi, Giulio Cerullo, and Roberto Osellame, "Fabrication of binary Fresnel lenses in PMMA by femtosecond laser surface ablation," Opt. Express 19, 11597-11604 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11597


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Jahns and S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29(7), 931–936 (1990). [CrossRef] [PubMed]
  2. K. Miyamoto, “The phase Fresnel lens,” J. Opt. Soc. Am. 51(1), 17–20 (1961). [CrossRef]
  3. E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010). [CrossRef] [PubMed]
  4. E. Schonbrun, P. E. Steinvurzel, and K. B. Crozier, “A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array,” Opt. Express 19(2), 1385–1394 (2011). [CrossRef] [PubMed]
  5. L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000). [CrossRef]
  6. P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication (SPIE-International Society for Optical Engineering Press, 1997), Vol. 2.
  7. S. Turri, M. Levi, E. Emilitri, R. Suriano, and R. Bongiovanni, “Direct photopolymerisation of PEG-methacrylate oligomers for an easy prototyping of microfluidic structures,” Macromol. Chem. Phys. 211, 879–887 (2010).
  8. H. Klank, J. P. Kutter, and O. Geschke, “CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems,” Lab Chip 2(4), 242–246 (2002). [CrossRef]
  9. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996). [CrossRef]
  10. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008). [CrossRef]
  11. J. Krüger and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Adv. Polym. Sci. 168, 247–289 (2004).
  12. S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 155–560 (2000).
  13. D. Klinger, R. Sobierajski, R. Nietubyć, J. Krzywiński, J. Pełka, L. Juha, M. Jurek, D. Źymierska, S. Guizard, and H. Merdji, “Surface modification of polymethylmethacrylate irradiated with 60fs single laser pulses,” Radiat. Phys. Chem. 78(10), S71–S74 (2009). [CrossRef]
  14. C. De Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010). [CrossRef]
  15. Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, and Z. Zhou, “Single femtosecond pulse holography using polymethyl methacrylate,” Opt. Express 10(21), 1173–1178 (2002). [PubMed]
  16. D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13(16), 5939–5946 (2005). [CrossRef] [PubMed]
  17. D. L. N. Kallepalli, N. R. Desai, and V. R. Soma, “Fabrication and optical characterization of microstructures in poly(methylmethacrylate) and poly(dimethylsiloxane) using femtosecond pulses for photonic and microfluidic applications,” Appl. Opt. 49(13), 2475–2489 (2010). [CrossRef]
  18. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006). [CrossRef] [PubMed]
  19. A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29(16), 1840–1842 (2004). [CrossRef] [PubMed]
  20. S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing diffraction efficiency by heating phase gratings formed by femtosecond laser irradiation in poly(methyl methacrylate),” Appl. Phys. Lett. 94(24), 241122 (2009). [CrossRef]
  21. W. Watanabe, D. Kuroda, K. Itoh, and J. Nishii, “Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses,” Opt. Express 10(19), 978–983 (2002). [PubMed]
  22. E. Bricchi, J. D. Mills, P. G. Kazansky, B. G. Klappauf, and J. J. Baumberg, “Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining,” Opt. Lett. 27(24), 2200–2202 (2002). [CrossRef]
  23. K. Yamada, W. Watanabe, Y. Li, K. Itoh, and J. Nishii, “Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses,” Opt. Lett. 29(16), 1846–1848 (2004). [CrossRef] [PubMed]
  24. P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Laser direct writing of volume modified Fresnel zone plates,” J. Opt. Soc. Am. B 24(9), 2090–2096 (2007). [CrossRef]
  25. P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Optimization of modified volume Fresnel zone plates,” J. Opt. Soc. Am. A 26(10), 2114–2120 (2009). [CrossRef]
  26. R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009). [CrossRef] [PubMed]
  27. S. Sinzinger and J. Jahns, Microoptics (Wiley –VCH, 2003), Chap. 6.
  28. F. Träger, Handbook of Lasers and Optics (Springer, 2007).
  29. A. Killi, A. Steinmann, J. Dörring, U. Morgner, M. J. Lederer, D. Kopf, and C. Fallnich, “High-peak-power pulses from a cavity-dumped Yb:KY(WO4)2 oscillator,” Opt. Lett. 30(14), 1891–1893 (2005). [CrossRef] [PubMed]
  30. S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Crystal. Solids (2011). doi:. [CrossRef]
  31. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited