OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11605–11614

Optimizing low loss negative index metamaterial for visible spectrum using differential evolution

Yongxiang Zhao, Fei Chen, Qiang Shen, Qiwen Liu, and Lianmeng Zhang  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11605-11614 (2011)
http://dx.doi.org/10.1364/OE.19.011605


View Full Text Article

Enhanced HTML    Acrobat PDF (1155 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel negative index metamaterial design methodology for the visible spectrum with low losses was presented in this paper. A robust differential evolution (DE) was employed to optimize the metamaterial design to achieve a desired set of values for the index of refraction. By using numerical simulation of a wedge-shaped model and S-parameter retrieval method, we found that the DE-designed optimal solution can exhibit a low loss LH frequency band with simultaneously negative values of effective permittivity and permeability at the violet-light wavelength of 408 nm, and the figure of merit is 15.2, that means it may have practical applications because of its low loss and high transmission. Therefore, the design methodology presented in this paper is a very convenient and efficient way to pursue a novel metamaterial with desired electromagnetic characteristics in the visible spectrum.

© 2011 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: April 7, 2011
Revised Manuscript: May 15, 2011
Manuscript Accepted: May 20, 2011
Published: June 1, 2011

Citation
Yongxiang Zhao, Fei Chen, Qiang Shen, Qiwen Liu, and Lianmeng Zhang, "Optimizing low loss negative index metamaterial for visible spectrum using differential evolution," Opt. Express 19, 11605-11614 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11605


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  3. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007). [CrossRef]
  4. I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102(21), 213901 (2009). [CrossRef] [PubMed]
  5. S. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34(22), 3478–3480 (2009). [CrossRef] [PubMed]
  6. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000). [CrossRef] [PubMed]
  7. R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78(4), 489–491 (2001). [CrossRef]
  8. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  9. C. R. Simovski and L. X. He, “Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting omega particles,” Phys. Lett. A 311(2-3), 254–263 (2003). [CrossRef]
  10. H. S. Chen, L. X. Ran, J. T. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. Au Kong, “Left-handed materials composed of only S-shaped resonators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(5), 057605 (2004). [CrossRef] [PubMed]
  11. H. S. Chen, L. X. Ran, J. T. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett. 86(15), 151909 (2005). [CrossRef]
  12. Y. H. Liu, C. R. Luo, and X. P. Zhao, “H-shaped structure of left-handed metamaterials with simultaneous negative permittivity and permeability,” Acta Phys. Sinica 56, 5883 (2007).
  13. M. Kafesaki, I. Tsiapa, N. Katsarekes, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B 75(23), 235114 (2007). [CrossRef]
  14. U. K. Chettiar, S. Xiao, A. V. Kildishev, W. S. Cai, H. K. Yuan, V. P. Drachev, and V. M. Shalaev, “Optical metamagnetism and negative-index metamaterials,” MRS Bull. 33(10), 921–926 (2008). [CrossRef]
  15. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005). [CrossRef]
  16. C. Helgert, C. Menzel, C. Rockstuhl, E. Pshenay-Severin, E. B. Kley, A. Chipouline, A. Tunnermann, F. Lederer, and T. Pertsch, “Polarization-independent negative-index metamaterial in the near infrared,” Opt. Lett. 34(5), 704–706 (2009). [CrossRef] [PubMed]
  17. Y. Zhao, F. Chen, H. Chen, N. Li, Q. Shen, and L. Zhang, “The microstructure design optimization of negative index metamaterials using genetic algorithm,” Prog. Electromag. Res. Lett. 22, 95–108 (2011).
  18. M. A. Panduro, C. A. Brizuela, L. I. Balderas, and D. A. Acosta, “A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays,” Prog. Electromag. Res. B 13, 171–186 (2009). [CrossRef]
  19. K. Siakavara, “Novel fractal antenna arrays for satellite networks: circular ring sierpinski carpet arrays optimized by genetic algorithms,” Prog. Electromag. Res. 103, 115–138 (2010). [CrossRef]
  20. R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim. 11(4), 341–359 (1997). [CrossRef]
  21. Y. X. Zhao, S. W. Xiong, and N. Xu, “The geometry optimization of argon atom clusters using differential evolution algorithm,” in Proceedings of ICCS 2007, Y. Shi et al. ed. (Springer-Verlag Berlin Heidelberg, 2007), pp. 1155–1158.
  22. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006). [CrossRef] [PubMed]
  23. K. S. Yee, “Numerical solution of intitial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. AP 14, 302–307 (1966).
  24. R. J. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. EMC 32, 222–227 (1990).
  25. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005). [CrossRef] [PubMed]
  26. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002). [CrossRef]
  27. X. D. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004). [CrossRef] [PubMed]
  28. P. Markos and C. M. Soukoulis, “Transmission properties and effective electromagnetic parameters of double negative metamaterials,” Opt. Express 11(7), 649–661 (2003). [CrossRef] [PubMed]
  29. T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 065602 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited