OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11615–11622

A compact orbital angular momentum spectrometer using quantum zeno interrogation

Paul Bierdz and Hui Deng  »View Author Affiliations

Optics Express, Vol. 19, Issue 12, pp. 11615-11622 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1304 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a scheme to measure the orbital angular momentum spectrum of light using a precisely timed optical loop and quantum non-demolition measurements. We also discuss the influence of imperfect optical components.

© 2011 OSA

OCIS Codes
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: April 18, 2011
Revised Manuscript: May 19, 2011
Manuscript Accepted: May 26, 2011
Published: June 1, 2011

Paul Bierdz and Hui Deng, "A compact orbital angular momentum spectrometer using quantum zeno interrogation," Opt. Express 19, 11615-11622 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef] [PubMed]
  2. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3, 305–310 (2007). [CrossRef]
  3. S. Franke-Arnold, L. Allen, and M. J. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev. 2, 299–313 (2008). [CrossRef]
  4. G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88, 013601 (2001). [CrossRef]
  5. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001). [CrossRef] [PubMed]
  6. G. Molina-Terriza, A. Vaziri, R. Ursin, and A. Zeilinger, “Experimental quantum coin tossing,” Phys. Rev. Lett. 94, 040501 (2005). [CrossRef] [PubMed]
  7. D. Kaszlikowski, P. Gnacinacuteski, M. Zdotukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-Dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85, 4418–4421 (2000). [CrossRef] [PubMed]
  8. N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-Level systems,” Phys. Rev. Lett. 88, 127902 (2002). [CrossRef] [PubMed]
  9. B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional hilbert spaces,” Nat. Phys. 5, 134–140 (2009). [CrossRef]
  10. J. T. Barreiro, T. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008). [CrossRef]
  11. J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chávez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010). [CrossRef] [PubMed]
  12. Z. Wang, Z. Zhang, and Q. Lin, “A novel method to determine the helical phase structure of Laguerre–Gaussian beams,” J. Opt. A, Pure Appl. Opt. 11, 085702 (2009). [CrossRef]
  13. V. Bazhekov, M. Vasnetsov, and M. S. Soskin, “Laser-beams with screw dislocation in their wavefronts,” JETP Lett. 52, 429–431 (1990).
  14. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992). [CrossRef] [PubMed]
  15. J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “The production of multiringed Laguerre–Gaussian modes by computer-generated holograms,” J. Mod. Opt. 45, 1231–1237 (1998). [CrossRef]
  16. J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92, 013601 (2004). [CrossRef] [PubMed]
  17. G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010). [CrossRef]
  18. A. Peres, “Zeno paradox in quantum theory,” Am. J. Phys. 48, 931–932 (1980). [CrossRef]
  19. A. C. Elitzur and L. Vaidman, “Quantum mechanical interaction-free measurements,” Found. Phys. 7, 987–997 (1993). [CrossRef]
  20. P. G. Kwiat, A. G. White, J. R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter, and A. Zeilinger, “High-efficiency quantum interrogation measurements via the quantum Zeno effect,” Phys. Rev. Lett. 83, 4725–4728 (1999). [CrossRef]
  21. S0 and S1 are optical switches that can be switched from been transmittive to reflective. S0 needs to transmit the initial incident light, and be switched to be reflective by the end of the first outer-loop cycle. A high repetition rate is not required and it can be implemeted either mechanically or opto-electrically. Alternatively it could also be a static high-reflectance mirror, if the one-time transmission loss at the very beginning can be tolerated. S1 needs to be switched every QZI loop cycle (ΔT) and need to be polarization insensitive. The fastest switches are Pockels cells, which can operate at 10–100 GHz with 99% transmission. One scheme, similar to the one implemented in Ref. [20], is to an interferometer with Pockels cells in one of the arms. The Pockels cells introduce π phase shift in the arm when activated, and thus switch the beam between two output ports of the interferometer. Using two Pockels cells rotated relative to each other will cancel the birefringent effect.
  22. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994). [CrossRef]
  23. B. Misra and E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,” J. Math. Phys. 18, 756–763 (1977). [CrossRef]
  24. Technically, each |α|2 is slightly different, but the difference is well within 1%. The |α|2 that matters most is the one corresponding to the QZI loop (including S1), which, without any optimization, consists of 4 beam splitters, 5 mirrors, 1 waveplate and up to three Pockels cells. Assuming all optics are anti-reflection coated so that loss is 1% at each Pockels cell and 0.1% at each other component, we have |α|2 = 0.96.
  25. J. Jang, “Optical interaction-free measurement of semitransparent objects,” Phys. Rev. A 59, 2322–2329 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited