OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11667–11679

Nd:YAG single-crystal fiber as high peak power amplifier of pulses below one nanosecond

Igor Martial, François Balembois, Julien Didierjean, and Patrick Georges  »View Author Affiliations

Optics Express, Vol. 19, Issue 12, pp. 11667-11679 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1602 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explore the potential of Nd:YAG single-crystal fibers for the amplification of passively Q-switched microlasers operating below 1 ns. Different regimes are tested in single or double pass configurations. For high gain and high power amplification this novel gain medium provided average powers up to 20 W at high repetition rate (over 40 kHz) for a pulse duration of 1 ns. As an energy amplifier, Nd:YAG single-crystal fiber delivered 2.7 mJ, 6 MW 450 ps pulses at 1 kHz. The extraction efficiencies vary from 8% to 32.7% following the configurations.

© 2011 OSA

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(140.3280) Lasers and laser optics : Laser amplifiers
(140.3380) Lasers and laser optics : Laser materials
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3540) Lasers and laser optics : Lasers, Q-switched

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 24, 2011
Revised Manuscript: March 25, 2011
Manuscript Accepted: May 3, 2011
Published: June 1, 2011

Igor Martial, François Balembois, Julien Didierjean, and Patrick Georges, "Nd:YAG single-crystal fiber as high peak power amplifier of pulses below one nanosecond," Opt. Express 19, 11667-11679 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010). [CrossRef]
  2. P. Peuser, W. Platz, and G. Holl, “Miniaturized, high-power diode-pumped, Q-switched Nd:YAG laser oscillator-amplifier,” Appl. Opt. 50(4), 399–404 (2011). [CrossRef] [PubMed]
  3. F. Druon, F. Balembois, P. Georges, and A. Brun, “High-repetition-rate 300-ps pulsed ultraviolet source with a passively Q-switched microchip laser and a multipass amplifier,” Opt. Lett. 24(7), 499–501 (1999). [CrossRef]
  4. Y. Isyanova, J. G. Manni, and D. Welford, " High-power, passively Q-switched microlaser - power amplifier system," in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, 2001), paper MD2.
  5. S. Forget, F. Balembois, P. Georges, and P.-J. Devilder, “New 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals,” Appl. Phys. B 75(4-5), 481–485 (2002). [CrossRef]
  6. J. G. Manni, “Amplification of microchip oscillator emission using a diode-pumped wedged-slab amplifier,” Opt. Commun. 252(1-3), 117–126 (2005). [CrossRef]
  7. A. Agnesi, P. Dallocchio, S. Dell’Acqua, F. Pirzio and G. Reali, “High peak power sub-nanosecond MOPA laser,” presented at 4th EPS-QEOD EUROPHOTON CONFERENCE, Hamburg, September 2010, paper WeB5.
  8. A. Gaydardzhiev, D. Draganov, and I. Buchvarov, “A compact Nd:YAG slab amplifier for miniature solid state Q-switched lasers,” presented at 4th EPS-QEOD EUROPHOTON CONFERENCE, Hamburg, September 2010, paper WeP18.
  9. C. D. Brooks and F. Di Teodoro, “1-mJ energy, 1-MW peak-power, 10-W average-power, spectrally narrow, diffraction-limited pulses from a photonic-crystal fiber amplifier,” Opt. Express 13(22), 8999–9002 (2005). [CrossRef] [PubMed]
  10. F. Di Teodoro and C. D. Brooks, “Multi-MW peak power, single transverse mode operation of a 100 micron core diameter, Yb-doped photonic crystal rod amplifier,” Fiber Lasers IV: Technology, Systems, and Applications, edited by D. J. Harter, A. Tünnermann, J. Broeng, C. Headley III, Proc. of SPIE Vol. 6453, 645318, (2007).
  11. R. L. Farrow, D. A. V. Kliner, P. E. Schrader, A. A. Hoops, S. W. Moore, G. R. Hadley, and R. L. Schmitt, “High-peak-power (>1.2 MW) pulsed fiber amplifier,” Fiber Lasers III: Technology, Systems, and Applications, edited by A. J. W. Brown, J. Nilsson, D. J. Harter, A. Tünnermann, Proc. of SPIE Vol. 6102, 61020L, (2006).
  12. A. Galvanauskas, M. Cheng, K. Hou, and K. Liao, “High peak power pulse amplification in large-core Yb-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 13(3), 559–566 (2007). [CrossRef]
  13. J. Didierjean, M. Castaing, F. Balembois, P. Georges, D. Perrodin, J. M. Fourmigué, K. Lebbou, A. Brenier, and O. Tillement, “High-power laser with Nd:YAG single-crystal fiber grown by the micro-pulling-down technique,” Opt. Lett. 31(23), 3468–3470 (2006). [CrossRef] [PubMed]
  14. J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+: YAG crystals,” Phys. Status Solidi., A Appl. Mater. Sci. 202(13), 2565–2573 (2005). [CrossRef]
  15. S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998). [CrossRef]
  16. A. Rapaport, S. Z. Zhao, G. H. Xiao, A. Howard, and M. Bass, “Temperature dependence of the 1.06-microm stimulated emission cross section of neodymium in YAG and in GSGG,” Appl. Opt. 41(33), 7052–7057 (2002). [CrossRef] [PubMed]
  17. O. Kimmelma, I. Tittonen, and S. C. Buchter, “Thermal tuning of laser pulse parameters in passively Q-switched Nd:YAG lasers,” Appl. Opt. 47(23), 4262–4266 (2008). [CrossRef] [PubMed]
  18. N. P. Barnes and B. Walsh, “Amplified Spontaneous Emission –Application to Nd:YAG Lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999). [CrossRef]
  19. A. E. Siegmann, Lasers (University Sciences Books, 1986) p 386.
  20. W. Koechner, Solid State Laser Engineering, 5th ed. (Springer, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited