OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11691–11704

In-plane rotation classification for coherent X-ray imaging of single biomolecules

Kaiqin Chu, James Evans, Nina Rohringer, Stefan Hau-Riege, Alexander Graf, Matthias Frank, Zachary J. Smith, and Stephen Lane  »View Author Affiliations

Optics Express, Vol. 19, Issue 12, pp. 11691-11704 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (3105 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a new classification scheme with computation complexity well within the capacity of a PC for coherent X-ray imaging of single biomolecules. In contrast to current methods, which are based on data from large scattering angles, we propose to classify the orientations of the biomolecule using data from small angle scattering, where the signals are relatively strong. Further we integrate data to form radial and azimuthal distributions of the scattering pattern to reduce the variance caused by the shot noise. Classification based on these two distributions are shown to successfully recognize not only the patterns from molecules of the same orientation but also those that differ by an in-plane rotation.

© 2011 OSA

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(290.5840) Scattering : Scattering, molecules
(290.2558) Scattering : Forward scattering
(110.3200) Imaging systems : Inverse scattering

ToC Category:
X-ray Optics

Original Manuscript: February 15, 2011
Revised Manuscript: May 7, 2011
Manuscript Accepted: May 25, 2011
Published: June 1, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Kaiqin Chu, James Evans, Nina Rohringer, Stefan Hau-Riege, Alexander Graf, Matthias Frank, Zachary J. Smith, and Stephen Lane, "In-plane rotation classification for coherent X-ray imaging of single biomolecules," Opt. Express 19, 11691-11704 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Sayre, H. N. Chapman, and J. Miao, “On the extendibility of x-ray crystallography to noncrystals,” Acta Crystallogr., Sect. A: Found. Crystallogr. 54, 323–239 (1998). [CrossRef]
  2. J. Miao, Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999). [CrossRef]
  3. R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu, “Potential for biomolecular imaging with femtosecond x-ray pulses,” Nature 406, 753–757 (2000). [CrossRef]
  4. S. Marchesini, H. Chapman, S. P. Hau-Riege, R. A. London, A. Szoke, H. He, M. R. Howells, H. Padmore, R. Rosen, J. C. H. Spence, and U. Weierstall, “Coherent x-ray diffractive imaging: applications and limitations,” Opt. Express 11, 2344–2353 (2003). [CrossRef] [PubMed]
  5. J. Miao, D. Sayre, and H. N. Chapman, “Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects,” J. Opt. Soc. Am. A 15, 1662–1669 (1998). [CrossRef]
  6. I. Robinson, I. Vartanyants, G. Williams, M.A. Pfeifer, and J. Pitney, “Reconstruction of the shapes of gold nanocrystals using coherent x-ray diffraction,” Phy. Rev. Lett. 87(19), 195505 (2001). [CrossRef]
  7. J. Miao, T. Ishkawa, B. Johnson, E. H. Anderson, B. Lai, and K. O. Ohodgson, “High resoluton 3D x-ray diffraction microscopy,” Phys. Rev. Lett. 89, 088302 (2002). [CrossRef]
  8. J. C. H. Spence, U. Weierstall, and M. Howells, “Phase recovery and lensless imaging by iterative methods in optical x-ray and electron diffraction,” PPhilos. Trans. R. Soc. London, Ser. A 360, 875–895 (2002). [CrossRef]
  9. Y. Nishino, J. Miao, and T. Ishikawa, “Image reconstruction of nanostructured nonperiodic objects only from oversampled hard x-ray diffraction intensities,” Phys. Rev. B 68, 220101 (2003). [CrossRef]
  10. S. Marchesini, H. He, H. N. Chapman, S. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, and J. C. H. Spence, “X-ray image reconstruction from a diffraction pattern alone,” Phy. Rev. B 68, 140101 (2003). [CrossRef]
  11. G. Williams, M. A. Pfeifer, I. Vartanyants, and I. Robinson, “Three-dimensional imaging of microstructure in au nanocrystals,” Phys. Rev. Lett. 90, 195505 (2003).
  12. G. Huldt, A. Szoke, and J. Hajdu, “Diffraction imaging of single particles and biomolecules,” J. Struct. Biol. 144, 219–227 (2003). [CrossRef] [PubMed]
  13. S. Hau-Riege, H. Szoke, H. N. Chapman, A. Szoke, S. Marchesini, A. Noy, H. He, M. Howells, U. Weierstall, and J. C. H. Spence, “Speden: reconstructing single particles from their diffraction patterns,” Acta Crystallogr. Sect. A: Found. Crystallogr. 60, 294–305 (2004). [CrossRef]
  14. D. Shapir, P. Thibault, T. Beetz, V. Elser, M. Howells, C. Jacobsen, J. Kirz, E. Lima, H. Miao, A. M. Neiman, and D. Sayre, “Biological imaging by soft x-ray diffraction microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(43), 15343–15346 (2005). [CrossRef]
  15. H. N. Chapman, A. Barty, S. Marchesini, A. Noy, S. P. Hau-Riege, C. Cui, M. R. Howells, R. Rosen, H. He, J. C. H. Spence, U. Weierstall, T. Beetz, C. Jacobsen, and D. Shapiro, “High-resolution ab initio three-dimensional x-ray diffraction microscopy,” J. Opt. Soc. Am. A 23, 1179–1200 (2006). [CrossRef]
  16. H. N. Chapman, S. Bajt, A. Barty, W. H. Benner, M. J. Bogan, M. Frank, S. P. Hau-Riege, R. A. London, S. Marchesini, E. Spiller, A. Szke, and B. W. Woods, “Ultrafast coherent diffraction imaging with x-ray free-electron lasers,” Proc. FEL , 805–811 (2006).
  17. J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, and I. Johnson, “Hard x-ray lensless imaging of extended objects,” Phy. Rev. Lett. 98, 034801 (2007). [CrossRef]
  18. C. Song, H. Jiang, A. Mancuso, B. Amirbekian, L. Peng, R. Sun, S. S. Shah, Z. H. Zhou, T. Ishikawa, and J. Miao, “Quantitative imaging of single, unstained viruses with coherent x rays,” Phys. Rev. Lett. 101, 158101 (2008). [CrossRef] [PubMed]
  19. M. M. Seibert, T. Ekeberg, F. R. N. C. Maia, M. Svenda, J. Andreasson, O. Jonsson, D. Odic, B. Iwan, A. Rocker, D. Westphal, M. Hantke, D. P. DePonte, A. Barty, J. Schulz, L. Gumprecht, N. Coppola, A. Aquila, M. Liang, T. A. White, A. Martin, C. Caleman, S. Stern, C. Abergel, V. Seltzer, and J.-M. Claverie, “Single mimivirus particles intercepted and imaged with an x-ray laser,” Nature 470, 78–81 (2011). [CrossRef] [PubMed]
  20. G. Bortel and G. Faigel, “Classification of continuous diffraction patterns: a numerical study,” J. Struct. Biol. 158, 10–18 (2007). [CrossRef]
  21. N.-T. D. Loh and V. Elser, “Reconstruction algorithm for single-particle diffraction imaging experiments,” Phy. Rev. E 80, 026705 (2009). [CrossRef]
  22. R. Fung, V. Shneerson, D. K. Saldin, and A. Ourmazd, “Structure from fleeting illumination of faint spinning objects in flight,” Nat. Phys. 5, 64–67 (2009). [CrossRef]
  23. D. K. Saldin, V. L. Shneerson, R. Fung, and A. Ourmazd, “Structure of isolated biomolecules obtained from ultrashort x-ray pulses: exploiting the symmetry of random orientations,” J. Phys.: Condens. Matter 21, 134014 (2009). [CrossRef]
  24. M. van Heel, “Angular reconstruction: a posteriori assignment of projection directions for 3d reconstruction,” Ultramicroscopy 21, 111–124 (1987). [CrossRef] [PubMed]
  25. N. A. Farrow and F. P. Ottensmeyer, “A posteriori determination of relative projection directions of arbitrarily oriented macromolecules,” J. Opt. Soc. Am. A 9, 1749–1760 (1992). [CrossRef]
  26. M. van Heel, “Single-particle electron cryo-microscopy: towards atomic resolution,” Q. Rev. Biophys. 33, 307–369 (2000). [CrossRef]
  27. R. Miles, “On random rotations in r3,” Biometrika 52, 636–639 (1965).
  28. J. Lipfert, D. Herschlag, and S. Doniach, “Riboswitch conformations revealed by small-angle x-ray scattering,” Methods Mol. Biol. 540, 141–159 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited