OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11740–11745

Silicon ring isolators with bonded nonreciprocal magneto-optic garnets

Ming-Chun Tien, Tetsuya Mizumoto, Paolo Pintus, Herbert Kromer, and John E. Bowers  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11740-11745 (2011)
http://dx.doi.org/10.1364/OE.19.011740


View Full Text Article

Enhanced HTML    Acrobat PDF (1157 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A ring isolator is demonstrated for the first time by directly bonding a cerium-substituted yttrium iron garnet (Ce:YIG) onto a silicon ring resonator using oxygen plasma enhanced bonding. The silicon waveguide is 600 nm wide and 295 nm thick with 500-nm-thick Ce:YIG on the top to have reasonable nonreciprocal effect and low optical loss. With a radial magnetic field applied to the ring isolator, it exhibits 9-dB isolation at resonance in the 1550 nm wavelength regime.

© 2011 OSA

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(230.3240) Optical devices : Isolators

ToC Category:
Integrated Optics

History
Original Manuscript: March 18, 2011
Revised Manuscript: April 18, 2011
Manuscript Accepted: May 4, 2011
Published: June 1, 2011

Citation
Ming-Chun Tien, Tetsuya Mizumoto, Paolo Pintus, Herbert Kromer, and John E. Bowers, "Silicon ring isolators with bonded nonreciprocal magneto-optic garnets," Opt. Express 19, 11740-11745 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11740


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Shintaku, “Integrated optical isolator based on efficient nonreciprocal radiation mode conversion,” Appl. Phys. Lett. 73(14), 1946–1948 (1998). [CrossRef]
  2. H. Shimizu and S. Goto, “Evanescent semiconductor active optical isolators for low insertion loss and high gain saturation power,” J. Lightwave Technol. 28(9), 1414–1419 (2010). [CrossRef]
  3. H. Shimizu and Y. Nakano, “Fabrication and characterization of an InGaAsP/InP active waveguide optical isolator with 14.7 dB/mm TE mode nonreciprocal attenuation,” J. Lightwave Technol. 24(1), 38–43 (2006). [CrossRef]
  4. J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000). [CrossRef]
  5. H. Yokoi, T. Mizumoto, and Y. Shoji, “Optical nonreciprocal devices with a silicon guiding layer fabricated by wafer bonding,” Appl. Opt. 42(33), 6605–6612 (2003). [CrossRef] [PubMed]
  6. H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39(33), 6158–6164 (2000). [CrossRef]
  7. Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008). [CrossRef]
  8. Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett. 30(15), 1989–1991 (2005). [CrossRef] [PubMed]
  9. W. Śmigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Lett. 35(4), 568–570 (2010). [CrossRef] [PubMed]
  10. A. Rostami, “Piecewise linear integrated optical device as an optical isolator using two-port nonlinear ring resonators,” Opt. Laser Technol. 39(5), 1059–1065 (2007). [CrossRef]
  11. L. Fan, J. Wang, H. Shen, L. T. Varghese, B. Niu, J. Ouyang, and M. Qi, “A CMOS compatible microring-based on-chip isolator with 18dB optical isolation,” in Frontiers in Optics (OSA, 2010), paper FThQ4.
  12. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009). [CrossRef]
  13. N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Express 15(12), 7737–7751 (2007). [CrossRef] [PubMed]
  14. S. Yamamoto and T. Makimoto, “Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveguides and design of nonreciprocal devices for integrated optics,” J. Appl. Phys. 45(2), 882–888 (1974). [CrossRef]
  15. O. Zhuromskyy, H. Dotsch, M. Lohmeyer, L. Wilkens, and P. Hertel, “Magnetooptical waveguides with polarization-independent nonreciprocal phase shift,” J. Lightwave Technol. 19(2), 214–221 (2001). [CrossRef]
  16. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008). [CrossRef]
  17. P. Paolo, M.-C. Tien, and J. Bowers, “Design of magneto-optical ring isolator on SOI based on the finite element method,” Photon. Technol. Lett. (submitted to).
  18. A. Konrad, “High-order triangular finite elements for electromagnetic waves in anisotropic media,” IEEE Trans. Microw. Theory Tech. 25(5), 353–360 (1977). [CrossRef]
  19. T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys. 74(8), 4877–4881 (1993). [CrossRef]
  20. D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8(1), 118–131 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited