OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11769–11779

Refractometer based on fiber Bragg grating Fabry-Pérot cavity embedded with a narrow microchannel

Kaiming Zhou, Zhijun Yan, Lin Zhang, and Ian Bennion  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11769-11779 (2011)
http://dx.doi.org/10.1364/OE.19.011769


View Full Text Article

Enhanced HTML    Acrobat PDF (1359 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on inscription of microchannels of different widths in optical fiber using femtosecond (fs) laser inscription assisted chemical etching and the narrowest channel has been created with a width down to only 1.2μm. Microchannels with 5μm and 35μm widths were fabricated together with Fabry-Pérot (FP) cavities formed by UV laser written fiber Bragg gratings (FBGs), creating high function and linear response refractometers. The device with a 5μm microchannel has exhibited a refractive index (RI) detection range up to 1.7, significantly higher than all fiber grating RI sensors. In addition, the microchannel FBG FP structures have been theoretically simulated showing excellent agreement with experimental measured characteristics.

© 2011 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(160.2750) Materials : Glass and other amorphous materials

ToC Category:
Sensors

History
Original Manuscript: January 25, 2011
Revised Manuscript: March 11, 2011
Manuscript Accepted: March 24, 2011
Published: June 2, 2011

Citation
Kaiming Zhou, Zhijun Yan, Lin Zhang, and Ian Bennion, "Refractometer based on fiber Bragg grating Fabry-Pérot cavity embedded with a narrow microchannel," Opt. Express 19, 11769-11779 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11769


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  2. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28(1), 55–57 (2003). [CrossRef] [PubMed]
  3. K. Zhou, Y. Lai, X. Chen, K. Sugden, L. Zhang, and I. Bennion, “A refractometer based on a micro-slot in a fiber Bragg grating formed by chemically assisted femtosecond laser processing,” Opt. Express 15(24), 15848–15853 (2007). [CrossRef] [PubMed]
  4. S. Mihailov, C. Smelser, D. Grobnic, R. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004). [CrossRef]
  5. A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006). [CrossRef] [PubMed]
  6. Y. Lai, K. Zhou, K. Sugden, and I. Bennion, “Point-by-point inscription of first-order fiber Bragg grating for C-band applications,” Opt. Express 15(26), 18318–18325 (2007). [CrossRef] [PubMed]
  7. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010). [CrossRef] [PubMed]
  8. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24(10), 646–648 (1999). [CrossRef]
  9. T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008). [CrossRef] [PubMed]
  10. Y. Wang, D. N. Wang, M. Yang, W. Hong, and P. Lu, “Refractive index sensor based on a microhole in single-mode fiber created by the use of femtosecond laser micromachining,” Opt. Lett. 34(21), 3328–3330 (2009). [CrossRef] [PubMed]
  11. Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010). [CrossRef]
  12. Z. Ran, Y. Rao, J. Zhang, Z. Liu, and B. Xu, “A miniature fiber-optic refractive-index sensor based on laser-machined Fabry–Perot interferometer tip,” J. Lightwave Technol. 27(23), 5426–5429 (2009). [CrossRef]
  13. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008). [CrossRef]
  14. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  15. P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997). [CrossRef]
  16. A. Muller, E. B. Flagg, J. R. Lawall, and G. S. Solomon, “Ultrahigh-finesse, low-mode-volume Fabry-Perot microcavity,” Opt. Lett. 35(13), 2293–2295 (2010). [CrossRef] [PubMed]
  17. Y. Lai, K. Zhou, L. Zhang, and I. Bennion, “Microchannels in conventional single-mode fibers,” Opt. Lett. 31(17), 2559–2561 (2006). [CrossRef] [PubMed]
  18. J. Petrovic, Y. Lai, and I. Bennion, “Numerical and experimental study of microfluidic devices in step-index optical fibers,” Appl. Opt. 47(10), 1410–1416 (2008). [CrossRef] [PubMed]
  19. K. Zhou, X. Chen, G. Simpson, D. Zhao, L. Zhang, and I. Bennion, “Temperature referenced high sensitivity point-probe optical fiber chem-sensors based on cladding etched fiber bragg gratings,” in Optical Sensing, B. Culshaw, A. Mignani, and R. Riesenberg, eds., 5459, 409–414 (2004).
  20. R. Kashyap, Fiber Bragg Grating (Academic Press, 1999).
  21. S. Yuan and N. A. Riza, “General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses,” Appl. Opt. 38(15), 3214–3222 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited