OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11792–11803

Low-frequency transmitted intensity noise induced by stimulated Brillouin scattering in optical fibers

Asaf David and Moshe Horowitz  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11792-11803 (2011)
http://dx.doi.org/10.1364/OE.19.011792


View Full Text Article

Enhanced HTML    Acrobat PDF (1707 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study theoretically and experimentally the spectral properties of low-frequency transmitted intensity noise induced by stimulated Brillouin scattering in optical fibers. In fibers with a length of 25 km the Brillouin scattering induces transmitted intensity noise with a bandwidth on the order of tens of kHz. The power spectral density of the noise can be stronger than the shot noise in the photo-detector even when the optical power is significantly lower than the Brillouin threshold. The low-frequency transmitted intensity noise is caused due to depletion of the pump wave by the stochastic Brillouin wave. Since pump depletion occurs over a long distance, noise with a narrow bandwidth is generated in the transmitted wave. When the pump power is high enough, the spectrum of the induced noise contains features such as hole at low frequencies and ripples. Good quantitative agreement between theory and experiments is obtained. Low-frequency intensity noise induced by Brillouin scattering may limit the generation of ultra-low noise signals in optoelectronic oscillators and may limit the transfer of ultra-low noise signals in fibers.

© 2011 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(290.5900) Scattering : Scattering, stimulated Brillouin
(350.5500) Other areas of optics : Propagation

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 16, 2011
Revised Manuscript: May 12, 2011
Manuscript Accepted: May 12, 2011
Published: June 2, 2011

Citation
Asaf David and Moshe Horowitz, "Low-frequency transmitted intensity noise induced by stimulated Brillouin scattering in optical fibers," Opt. Express 19, 11792-11803 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11792


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Y. Chiao, C. H. Townes, and B. P. Stoicheff, “Stimulated Brillouin Scattering and Coherent Generation of Intense Hypersonic Waves,” Phys. Rev. Lett. 12, 592–595 (1964). [CrossRef]
  2. E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972). [CrossRef]
  3. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489–2494 (1972). [CrossRef] [PubMed]
  4. R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode optical-fibre characterisation,” Electron. Lett. 22, 1011–1013 (1986). [CrossRef]
  5. R. W. Boyd, K. Rzaz̧ewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990). [CrossRef] [PubMed]
  6. A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991). [CrossRef] [PubMed]
  7. A. A. Fotiadi, R. Kiyan, O. Deparis, P. Mégret, and M. Blondel, “Statistical properties of stimulated Brillouin scattering in single-mode optical fibers above threshold,” Opt. Lett. 27, 83–85 (2002). [CrossRef]
  8. L. Stépien, S. Randoux, and J. Zemmouri, “Origin of spectral hole burning in Brillouin fiber amplifiers and generators,” Phys. Rev. A 65, 053812 (2002). [CrossRef]
  9. Y. Takushima and K. Kikuchi, “Spectral gain hole burning and modulation instability in a Brillouin fiber amplifier,” Opt. Lett. 20, 34–36 (1995). [CrossRef] [PubMed]
  10. M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, “Broad-band transmitted intensity noise induced by Stokes and anti-Stokes Brillouin scattering in single-mode fibers,” IEEE Photon. Technol. Lett. 9, 124–126 (1997). [CrossRef]
  11. X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, and R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992). [CrossRef]
  12. P. A. Williams, W. C. Swann, and N. R. Newbury, “High-stability transfer of an optical frequency over long fiber-optic links,” J. Opt. Soc. Am. B 25, 1284–1293 (2008). [CrossRef]
  13. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13, 1725–1735 (1996). [CrossRef]
  14. C. W. Nelson, A. Hati, D. A. Howe, and W. Zhou, “Microwave optoelectronic oscillator with optical gain,” in Proc. IEEE Frequency Control Symp., pp. 1014–1019 (May2007).
  15. C. W. Nelson, A. Hati, and D. A. Howe, “Relative intensity noise suppression for RF photonic links,” IEEE Photon. Technol. Lett. 20, 1542–1544 (2008). [CrossRef]
  16. D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microwave Theory Tech. 56, 449–456 (2008). [CrossRef]
  17. M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” IEEE J. Lightwave Technol. 12, 585–590 (1994). [CrossRef]
  18. E. Levy, M. Horowitz, and C. R. Menyuk, “Noise distribution in the radio-frequency spectrum of opto-electronic oscillators,” Opt. Lett. 33, 2883–2885 (2008). [CrossRef] [PubMed]
  19. A. Melloni, M. Frasca, A. Garavaglia, A. Tonini, and M. Martinelli, “Direct measurement of electrostriction in optical fibers,” Opt. Lett. 23, 691–693 (1998). [CrossRef]
  20. R. B. Jenkins, R. M. Sova, and R. I. Joseph, “Steady-state noise analysis of spontaneous and stimulated Brillouin scattering in optical fibers,” IEEE J. Lightwave Technol. 25, 763–770 (2007). [CrossRef]
  21. C. J. Misas, P. Petropoulos, and D. J. Richardson, “Slowing of pulses to c/10 with subwatt power levels and low latency using Brillouin amplification in a bismuth-oxide optical fiber,” IEEE J. Lightwave Technol. 25, 216–221 (2007). [CrossRef]
  22. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” IEEE J. Lightwave Technol. 15, 1842–1851 (1997). [CrossRef]
  23. V. Lanticq, S. Jiang, R. Gabet, Y. Jaouën, F. Taillade, G. Moreau, and G. P. Agrawal, “Self-referenced and single-ended method to measure Brillouin gain in monomode optical fibers,” Opt. Lett. 34, 1018–1020 (2009). [CrossRef] [PubMed]
  24. P. D. Dragic, “Simplified model for effect of Ge doping on silica fibre acoustic properties,” Electron. Lett. 45, 256–257 (2009). [CrossRef]
  25. J. H. Mathews and K. D. Fink, Numerical Methods Using MATLAB, 3rd ed., (Prentice Hall, 1999), Chap. 9.
  26. M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980–1993 (1981). [CrossRef]
  27. V. I. Kovalev and R. G. Harrison, “Observation of inhomogeneous spectral broadening of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. Lett. 85, 1879–1882 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited