OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11832–11840

Dynamic generation of robust and controlled beating signals in an asymmetric procedure of light storage and retrieval

Qian-Qian Bao, Jin-Wei Gao, Cui-Li Cui, Gang Wang, Yan Xue, and Jin-Hui Wu  »View Author Affiliations

Optics Express, Vol. 19, Issue 12, pp. 11832-11840 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1361 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an efficient scheme for the robust and controlled generation of beating signals in a sample of stationary atoms driven into the tripod configuration. This scheme relies on an asymmetric procedure of light storage and retrieval where the two classical coupling fields have equal detunings in the storage stage but opposite detunings in the retrieval stage. A quantum probe field, incident upon such an atomic sample, is first transformed into two spin coherence wave-packets and then retrieved with two optical components characterized by different time-dependent phases. Therefore the retrieved quantum probe field exhibits a series of maxima and minima (beating signals) in intensity due to the alternative constructive and destructive interference. This interesting phenomenon involves in fact the coherent manipulation of two dark-state polaritons and may be explored to achieve the fast quantum limited measurement.

© 2011 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.1670) Quantum optics : Coherent optical effects
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: April 25, 2011
Revised Manuscript: May 20, 2011
Manuscript Accepted: May 23, 2011
Published: June 2, 2011

Qian-Qian Bao, Jin-Wei Gao, Cui-Li Cui, Gang Wang, Yan Xue, and Jin-Hui Wu, "Dynamic generation of robust and controlled beating signals in an asymmetric procedure of light storage and retrieval," Opt. Express 19, 11832-11840 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. D. Lukin, “Colloquium: trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003). [CrossRef]
  2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  3. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998). [CrossRef]
  4. D. A. Braje, V. Balic, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003). [CrossRef]
  5. H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91, 093601 (2003). [CrossRef] [PubMed]
  6. C.-Y. Wang, Y.-F. Chen, S.-C. Lin, W.-H. Lin, P.-C. Kuan, and I. A. Yu, “Low-light-level all-optical switching,” Opt. Lett. 31, 2350–2352 (2006). [CrossRef] [PubMed]
  7. C. Hang and G.-X. Huang, “Giant Kerr nonlinearity and weak-light superluminal optical solitons in a four-state atomic system with gain doublet,” Opt. Express 18, 2952–2966 (2010). [CrossRef] [PubMed]
  8. C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003). [CrossRef] [PubMed]
  9. H.-H. Wang, X.-G. Wei, L. Wang, Y.-J. Li, D.-M. Du, J.-H. Wu, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, “Optical information transfer between two light channels in a Pr3+:Y2SiO5crystal,” Opt. Express 15, 16044–16050 (2007). [CrossRef] [PubMed]
  10. J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008). [CrossRef] [PubMed]
  11. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature (London) 452, 67–71 (2008). [CrossRef]
  12. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature (London) 409, 490–493 (2001). [CrossRef]
  13. M. Fleischhauer and M. D. Lukin, “Dark-State Polaritons in Electromagnetically Induced Transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000). [CrossRef] [PubMed]
  14. R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155, 144–154 (1998). [CrossRef]
  15. J.-H. Wu, C.-L. Cui, N. Ba, Q.-R. Ma, and J.-Y. Gao, “Dynamical evolution and analytical solutions for multiple degenerate dark states in the tripod-type atomic system,” Phys. Rev. A 75, 043819 (2007). [CrossRef]
  16. A. Raczynski, M. Rzepecka, J. Zaremba, and S. Zielinska–Kaniasty, “Polariton picture of light propagation and storing in a tripod system,” Opt. Commun. 260, 73–80 (2006). [CrossRef]
  17. A. Raczynski, J. Zaremba, and S. Zielinska–Kaniasty, “Beam splitting and Hong-Ou-Mandel interference for stored light,” Phys. Rev. A 75, 013810 (2007). [CrossRef]
  18. C.-L. Cui, J.-K. Jia, J.-W. Gao, Y. Xue, G. Wang, and J.-H. Wu, “Ultraslow and superluminal light propagation in a four-level atomic system,” Phys. Rev. A 76, 033815 (2007). [CrossRef]
  19. D. Petrosyan and Y. P. Malakyan, “Magneto-optical rotation and cross-phase modulation via coherently driven four-level atomsin a tripod configuration,” Phys. Rev. A 70, 023822 (2004). [CrossRef]
  20. S. Rebic, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalan, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004). [CrossRef]
  21. Y.-X. Han, J.-T. Xiao, Y.-H. Liu, C.-H. Zhang, H. Wang, M. Xiao, and K.-C. Peng, “Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system,” Phys. Rev. A 77, 023824 (2008). [CrossRef]
  22. S.-J. Li, X.-D. Yang, X.-M. Cao, C.-H. Zhang, C.-D. Xie, and H. Wang, “Enhanced Cross-Phase Modulation Based on a Double Electromagnetically Induced Transparency in a Four-Level Tripod Atomic System,” Phys. Rev. Lett. 101, 073602 (2008). [CrossRef] [PubMed]
  23. L. Karpa, F. Vewinger, and M. Weitz, “Resonance beating of light stored using atomic spinor polaritons,” Phys. Rev. Lett. 101, 170406 (2008). [CrossRef] [PubMed]
  24. A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002). [CrossRef]
  25. L. Karpa, G. Nikoghosyan, F. Vewinger, M. Fleischhauer, and M. Weitz, “Frequency matching in light-storage spectroscopy of atomic Raman transitions,” Phys. Rev. Lett. 103, 093601 (2009). [CrossRef] [PubMed]
  26. G. Heinze, A. Rudolf, F. Beil, and T. Halfmann, “Storage of images in atomic coherences in a rare-earth-ion-doped solid,” Phys. Rev. A 81, 011401(R) (2010).
  27. E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66, 015802 (2002). [CrossRef]
  28. E. Kuznetsova, O. Kocharovskaya, P. Hemmer, and M. O. Scully, “Atomic interference phenomena in solids with a long-lived spin coherence,” Phys. Rev. A 66, 063802 (2002). [CrossRef]
  29. B. S. Ham, “Reversible quantum optical data storage based on resonant Raman optical field excited spin coherence,” Opt. Express 16, 14304–14313 (2008). [CrossRef] [PubMed]
  30. H. Wang, S.-J. Li, Z.-X. Xu, X.-B. Zhao, L.-J. Zhang, J.-H. Li, Y.-L. Wu, C.-D. Xie, K.-C. Peng, and M. Xiao, “Quantum interference of stored dual-channel spin-wave excitations in a single tripod system,” Phys. Rev. A 83, 043815 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited