OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11841–11851

42.7 Gbit/s electro-optic modulator in silicon technology

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11841-11851 (2011)
http://dx.doi.org/10.1364/OE.19.011841


View Full Text Article

Enhanced HTML    Acrobat PDF (1179 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

CMOS-compatible optical modulators are key components for future silicon-based photonic transceivers. However, achieving low modulation voltage and high speed operation still remains a challenge. As a possible solution, the silicon-organic hybrid (SOH) platform has been proposed. In the SOH approach the optical signal is guided by a silicon waveguide while the electro-optic effect is provided by an organic cladding with a high χ(2)-nonlinearity. In these modulators the optical nonlinear region needs to be connected to the modulating electrical source. This requires electrodes, which are both optically transparent and electrically highly conductive. To this end we introduce a highly conductive electron accumulation layer which is induced by an external DC “gate” voltage. As opposed to doping, the electron mobility is not impaired by impurity scattering. This way we demonstrate for the first time data encoding with an SOH electro-optic modulator. Using a first-generation device at a data-rate of 42.7 Gbit/s, widely open eye diagrams were recorded. The measured frequency response suggests that significantly larger data rates are feasible.

© 2011 OSA

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits
(250.7360) Optoelectronics : Waveguide modulators

ToC Category:
Optoelectronics

History
Original Manuscript: April 14, 2011
Revised Manuscript: May 27, 2011
Manuscript Accepted: May 30, 2011
Published: June 3, 2011

Citation
L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, "42.7 Gbit/s electro-optic modulator in silicon technology," Opt. Express 19, 11841-11851 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11841


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. P. Voinigescu, T. O. Dickson, R. Beerkens, I. Khalid, and P. Westergaard, “A comparison of SiCMOS, SiGeBiCMOS, and InPHBT technologies for high-speed and millimeter-wave ICs,” 2004 Topical Meeting on Silicon Monolithic Integrated Circuits inRF Systems, Digest of Papers, 111–114 (2004).
  2. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006). [CrossRef] [PubMed]
  3. P. Dong, S. R. Liao, D. Z. Feng, H. Liang, D. W. Zheng, R. Shafiiha, C. C. Kung, W. Qian, G. L. Li, X. Z. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009). [CrossRef]
  4. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  5. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196–1197 (2007). [CrossRef]
  6. A. Liu, L. Liao, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide,” Semicond. Sci. Technol. 23(6), 064001 (2008). [CrossRef]
  7. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010). [CrossRef]
  8. R. W. Boyd, Nonlinear Optics (Academic press, 2008).
  9. T. W. Baehr-Jones and M. J. Hochberg, “Polymer silicon hybrid systems: A platform for practical nonlinear optics,” J. Phys. Chem. C 112(21), 8085–8090 (2008). [CrossRef]
  10. J. M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express 16(6), 4177–4191 (2008). [CrossRef] [PubMed]
  11. M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15(13), 8401–8410 (2007). [CrossRef] [PubMed]
  12. J. H. Wülbern, A. Petrov, and M. Eich, “Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator,” Opt. Express 17(1), 304–313 (2009). [CrossRef] [PubMed]
  13. C. Koos, J. Brosi, M. Waldow, W. Freude, and J. Leuthold, “Silicon-on-insulator modulators for next-generation 100 Gbit/s-Ethernet,” Proc. European Conf. on Optical Communication (ECOC), Paper P056 (2007).
  14. J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express 18(16), 16902–16928 (2010). [CrossRef] [PubMed]
  15. W. Freude, J. Leuthold, L. Alloatti, T. Vallaitis, D. Korn, R. Palmer, C. Koos, J.-M. Brosi, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, B. Breiten, F. Diederich, A. Barklund, R. Dinu, and J. Wieland, “100 Gbit/s electro-optic modulator and 56 Gbit/s wavelength converter for DQPSK data in silicon-organic hybrid (SOH) technology,” Proc. IEEE Conf. on Novel Waveguiding, Structures and Phenomena, Summer Topicals, Paper WB2.1 (2010).
  16. J. H. Wülbern, S. Prorok, J. Hampe, A. Petrov, M. Eich, J. D. Luo, A. K. Y. Jen, M. Jenett, and A. Jacob, “40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides,” Opt. Lett. 35(16), 2753–2755 (2010). [CrossRef] [PubMed]
  17. T. Baehr-Jones, B. Penkov, J. Q. Huang, P. Sullivan, J. Davies, J. Takayesu, J. D. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008). [CrossRef]
  18. J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology-A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009). [CrossRef]
  19. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007). [CrossRef] [PubMed]
  20. L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “Silicon high-speed electro-optic modulator,” Proc. IEEE Conf. on Group IV Photonics, Paper ThC2 (2010).
  21. R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J. M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010). [CrossRef] [PubMed]
  22. N. N. Feng, S. R. Liao, D. Z. Feng, P. Dong, D. W. Zheng, H. Liang, R. Shafiiha, G. L. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm V(π)L integrated on 0.25microm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010). [CrossRef] [PubMed]
  23. S. M. Sze, and K. N. G. Kwok, Physics of Semiconductor Devices, Third Edition (Wiley, 2006).
  24. J. S. Suehle and P. Chaparala, “Low electric field breakdown of thin SiO2 films under static and dynamic stress,” IEEE Trans. Electron. Dev. 44(5), 801–808 (1997). [CrossRef]
  25. “GigOptix”, retrieved http://www.gigoptix.com/ .
  26. D. Jin, H. Chen, A. Barklund, J. Mallari, G. M. Yu, E. Miller, and R. Dinu, “EO polymer modulators reliability study,” Proc. SPIE 7599, 75990H, 75990H-8 (2010). [CrossRef]
  27. “ePIXfab: Vertical fiber couplers”, retrieved http://www.epixfab.eu/design/predefined_masks/imec/fxt_vertical_fiber_couplers .
  28. J. Blasco, and C. A. Barrios, “Compact slot-waveguide/channel-waveguide mode-converter,” Lasers and Electro-Optics Europe, 2005. CLEO/Europe. 2005 Conference on, 607 (2005).
  29. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006). [CrossRef]
  30. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics 3(4), 216–219 (2009). [CrossRef]
  31. “Synopsys, tools for simulating device performance”, retrieved http://www.synopsys.com/Tools/TCAD/DeviceSimulation/Pages/default.aspx .
  32. X. Z. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. L. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low-energy all-CMOS modulator integrated with driver,” Opt. Express 18(3), 3059–3070 (2010). [CrossRef] [PubMed]
  33. S. S. Li and W. R. Thurber, “Dopant density and temperature-dependence of electron-mobility and resistivity in n-type silicon,” Solid-State Electron. 20(7), 609–616 (1977). [CrossRef]
  34. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  35. D. M. Caughey and R. E. Thomas, “Carrier Mobilities In Silicon Empirically Related To Doping and Field,” Proc. IEEE 55(12), 2192–2193 (1967). [CrossRef]
  36. W. Spitzer and H. Y. Fan, “Infrared absorption in n-type silicon,” Phys. Rev. 108(2), 268–271 (1957). [CrossRef]
  37. “ePIXfab: LETI3 March 2009”, retrieved http://www.epixfab.eu/mpw_shuttles/shuttles/leti03 .
  38. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1(3), 180–185 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 4
 
Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited