OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11852–11866

Solid-core photonic bandgap fibers for cladding-pumped Raman amplification

Benjamin Ward  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11852-11866 (2011)
http://dx.doi.org/10.1364/OE.19.011852


View Full Text Article

Enhanced HTML    Acrobat PDF (1446 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Cladding-pumped solid-core photonic bandgap Raman fiber amplifiers are analyzed theoretically as possible candidates for power scaling. An example fiber design with a mode field diameter of 46 µm and a cladding diameter of 250 µm is calculated to exhibit 0.12 dB/km of confinement loss at the first Stokes wavelength and >10 dB/m at the second Stokes wavelength for a pump wavelength of 1.567 µm while maintaining low loss and large mode area in realistic coiling configurations. A Raman amplifier based on this fiber with 85 kW of output power, 78% optical conversion efficiency, a maximum heat load of 130 W/m, and a length of 235 m is simulated.

© 2011 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3550) Lasers and laser optics : Lasers, Raman
(140.4480) Lasers and laser optics : Optical amplifiers
(290.5910) Scattering : Scattering, stimulated Raman
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 15, 2011
Revised Manuscript: May 4, 2011
Manuscript Accepted: May 6, 2011
Published: June 3, 2011

Citation
Benjamin Ward, "Solid-core photonic bandgap fibers for cladding-pumped Raman amplification," Opt. Express 19, 11852-11866 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11852


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-13240 . [CrossRef] [PubMed]
  2. J. S. Kim, C. Codemard, Y. Jeong, J. Nilsson, and J. K. Sahu, “High power continuous-wave Yb-doped fiber laser with true single-mode output using W-type structure,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2006). http://dx.doi.org/10.1109/CLEO.2006.4628264 .
  3. L. Zenteno, J. Wang, D. Walton, B. Ruffin, M. Li, S. Gray, A. Crowley, and X. Chen, “Suppression of Raman gain in single-transverse-mode dual-hole-assisted fiber,” Opt. Express 13(22), 8921–8926 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-22-8921 . [CrossRef] [PubMed]
  4. S. Blin, L. Provino, N. Traynor, A. Mugnier, D. Pureur, and T. Chartier, “Design of all-solid photonic-bandgap fibers for Raman-free propagation,” Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference. CLEO Europe - EQEC 2009. European Conference on, pp.1, 14–19 June 2009.
  5. A. Argyros, T. Birks, S. Leon-Saval, C. M. B. Cordeiro, and P. St J Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Opt. Express 13(7), 2503–2511 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-7-2503 . [CrossRef] [PubMed]
  6. B. G. Ward, C. Robin, and M. Culpepper, “Photonic crystal fiber designs for power scaling of single-polarization amplifiers,” Proc. SPIE 6453, 645307, 645307-9 (2007), http://dx.doi.org/10.1117/12.717326 . [CrossRef]
  7. T. Kokki, J. Koponen, M. Laurila, and C. Ye, “Fiber amplifier utilizing an Yb-doped large-mode-area fiber with confined doping and tailored refractive index profile,” Proc. SPIE 7580, 758016, 758016-9 (2010), http://dx.doi.org/10.1117/12.842404 . [CrossRef]
  8. J. Ji, C. A. Codemard, M. Ibsen, J. K. Sahu, and J. Nilsson, “Analysis of the conversion to the first Stokes in cladding-pumped fiber Raman amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 129–139 (2009), http://dx.doi.org/10.1109/JSTQE.2008.2010229 . [CrossRef]
  9. J. E. Heebner, A. K. Sridharan, J. W. Dawson, M. J. Messerly, P. H. Pax, M. Y. Shverdin, R. J. Beach, and C. P. J. Barty, “High brightness, quantum-defect-limited conversion efficiency in cladding-pumped Raman fiber amplifiers and oscillators,” Opt. Express 18(14), 14705–14716 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-14-14705 . [CrossRef] [PubMed]
  10. J. Ji, C. A. Codemard, and J. Nilsson, “Analysis of spectral bendloss filtering in a cladding-pumped W-type fiber Raman amplifier,” J. Lightwave Technol. 28(15), 2179–2186 (2010), http://dx.doi.org/10.1109/JLT.2010.2052786 . [CrossRef]
  11. N. Shibata, M. Horigudhi, and T. Edahiro, “Raman spectra of binary high-silica glasses and fibers containing GeO2, P2O5 and B2O3,” J. Non-Cryst. Solids 45(1), 115–126 (1981), http://dx.doi.org/10.1016/0022-3093(81)90096-X . [CrossRef]
  12. Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007), http://dx.doi.org/10.1109/JSTQE.2007.897178 . [CrossRef]
  13. T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 µm,” Electron. Lett. 15(4), 106–108 (1979), http://dx.doi.org/10.1049/el:19790077 . [CrossRef]
  14. S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly pumped eyesafe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 645–657 (2005), http://dx.doi.org/10.1109/JSTQE.2005.850249 . [CrossRef]
  15. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-2-447 . [CrossRef] [PubMed]
  16. T. Murao, K. Saitoh, and M. Koshiba, “Detailed theoretical investigation of bending properties in solid-core photonic bandgap fibers,” Opt. Express 17(9), 7615–7629 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-9-7615 . [CrossRef] [PubMed]
  17. W. Tong, H. Wei, J. Li, H. Wang, Q. Han, J. Luo, G. Ren, X. Yu, and P. Shum, “Investigation of all-solid photonic bandgap fiber with low losses in low-order bandgaps,” Opt. Quant. Electron. 39, 1071 (2008), http://dx.doi.org/10.1007/s11082-007-9145-x .
  18. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm,” Opt. Express 13(21), 8452–8459 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-21-8452 . [CrossRef] [PubMed]
  19. K. Tajima, J. Zhou, K. Nakajima, and K. Sato, “Ultralow loss and long length photonic crystal fiber,” J. Lightwave Technol. 22(1), 7–10 (2004), http://dx.doi.org/10.1109/JLT.2003.822143 . [CrossRef]
  20. J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express 14(1), 69–81 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-1-69 . [CrossRef] [PubMed]
  21. A. Bétourné, G. Bouwmans, Y. Quiquempois, M. Perrin, and M. Douay, “Improvements of solid-core photonic bandgap fibers by means of interstitial air holes,” Opt. Lett. 32(12), 1719–1721 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-12-1719 . [CrossRef] [PubMed]
  22. J. Bromage, K. Rottwitt, and M. E. Lines, “A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles,” IEEE Photon. Technol. Lett. 14(1), 24–26 (2002), http://dx.doi.org/10.1109/68.974149 . [CrossRef]
  23. C. Brooks and F. Di Teodoro, “1-mJ energy, 1-MW peak-power, 10-W average-power, spectrally narrow, diffraction-limited pulses from a photonic-crystal fiber amplifier,” Opt. Express 13(22), 8999–9002 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-8999 . [CrossRef] [PubMed]
  24. A. V. Smith and B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47(26), 4812–4832 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ao-47-26-4812 . [CrossRef] [PubMed]
  25. K. Petermann and R. Kühne, “Upper and lower limits for the microbending loss in arbitrary single-mode fibers,” J. Lightwave Technol. 4(1), 2–7 (1986), http://dx.doi.org/10.1109/JLT.1986.1074620 . [CrossRef]
  26. B. H. Bransden, and C. J. Joachain, Introduction to Quantum Mechanics (Wiley, 1989).
  27. D. Marcuse, Theory of Dielectric Optical Waveguides. (Academic, 1991).
  28. C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express 19(4), 3258–3271 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-4-3258 . [CrossRef] [PubMed]
  29. B. Ward and M. Mermelstein, “Modeling of inter-modal Brillouin gain in higher-order-mode fibers,” Opt. Express 18(3), 1952–1958 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-1952 . [CrossRef] [PubMed]
  30. S. L. Semjonov, O. N. Egorova, A. F. Kosolapov, A. E. Levchenko, V. V. Velmiskin, A. D. Pryamikov, M. Y. Salganskiy, V. F. Khopin, M. V. Yashkov, A. N. Guryanov, and E. M. Dianov, “LMA fibers based on two-dimensional solid-core photonic bandgap fiber design,” Proc. SPIE 7580, 758018, 758018-9 (2010), http://dx.doi.org/10.1117/12.841265 . [CrossRef]
  31. M. Koshiba and Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol. 18(5), 737–743 (2000), http://dx.doi.org/10.1109/50.842091 . [CrossRef]
  32. F. L. Teixeira, and W. C. Chew, “General closed-form pml constitutive tensors to match arbitrary bianisotropic and dispersive linear media,” IEEE Microwave Guided Wave Lett. 8, 223–225 (1998), http://dx.doi.org/10.1109/75.678571 .
  33. V. Hernandez, J. E. Roman, and V. Vidal, “SLEPc: A scalable and flexible toolkit for the solution of Eigenvalue problems,” ACM Trans. Math. Softw. 31(3), 351–362 (2005), http://dx.doi.org/10.1109/75.678571 . [CrossRef]
  34. E. Coscelli, F. Poli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, and S. Selleri, “Single-mode analysis of Yb-doped double-cladding distributed spectral filtering photonic crystal fibers,” Opt. Express 18(26), 27197–27204 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-26-27197 . [CrossRef]
  35. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-8-3-173 . [CrossRef] [PubMed]
  36. R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for Optical Fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007), http://dx.doi.org/10.1109/JQE.2007.903364 . [CrossRef]
  37. M. H. Muendel, R. Farrow, K. Liao, D. Woll, J. Luu, C. Zhang, J. J. Morehead, J. Segall, J. Gregg, K. Tai, B. Kharlamov, H. Yu, and L. Myers, “Fused fiber pump and signal combiners for a 4-kW ytterbium fiber laser,” Proc. SPIE 7914, 791431, 791431-7 (2011), http://dx.doi.org/10.1117/12.877572 . [CrossRef]
  38. D. C. Brown, and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quant. Electron. 37, 207–217 (2001), http://dx.doi.org/10.1109/3.903070 .
  39. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).
  40. L. B. Glebov, “Intrinsic laser-induced breakdown of silicate glasses,” Proc. SPIE 4679, 321–331 (2002), http://dx.doi.org/10.1117/12.461727 . [CrossRef]
  41. J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16(19), 14435–14447 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14435 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited