OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11890–11896

Electrically tunable liquid crystal waveguide attenuators

Dong-Po Cai, Shan-Chi Nien, Hua-Kung Chiu, Chii-Chang Chen, and Chien-Chieh Lee  »View Author Affiliations

Optics Express, Vol. 19, Issue 12, pp. 11890-11896 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (948 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The attenuator for the wavelength at 1550 nm is fabricated by using the capillary effect to infiltrate liquid crystal (LC) E7 into hollow waveguides (HWGs) on silicon substrate with SiO2 cladding layer. The length of the waveguide is 0.4 cm. The device can be operated with relatively low driving voltage below 5 Vpp with the distance between two electrodes to be 9 μm. The light attenuation of the device can be over 30 dB. The performance of the device is independent of the polarization states of the input light.

© 2011 OSA

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(230.3720) Optical devices : Liquid-crystal devices
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

Original Manuscript: February 18, 2011
Revised Manuscript: April 9, 2011
Manuscript Accepted: April 26, 2011
Published: June 3, 2011

Dong-Po Cai, Shan-Chi Nien, Hua-Kung Chiu, Chii-Chang Chen, and Chien-Chieh Lee, "Electrically tunable liquid crystal waveguide attenuators," Opt. Express 19, 11890-11896 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid. 4(1-2), 3–16 (2008). [CrossRef] [PubMed]
  2. A. R. Hawkins and H. Schmidt, “Optofluidic waveguides: II. fabrication and structures,” Microfluid. Nanofluid. 4(1-2), 17–32 (2008). [CrossRef]
  3. A. Datta, I. Y. Eom, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon,” IEEE Sens. J. 3(6), 788–795 (2003). [CrossRef]
  4. A. D’Alessandro, B. D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006). [CrossRef]
  5. D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “Switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron. 46(5), 762–768 (2010). [CrossRef]
  6. W. Risk, H. Kim, R. Miller, H. Temkin, and S. Gangopadhyay, “Optical waveguides with an aqueous core and a low-index nanoporous cladding,” Opt. Express 12(26), 6446–6455 (2004). [CrossRef] [PubMed]
  7. D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004). [CrossRef] [PubMed]
  8. J. B. Shellan, P. Agmon, P. Yeh, and A. Yariv, “Statistical analysis of Bragg reflectors,” J. Opt. Soc. Am. 68(1), 18 (1978). [CrossRef]
  9. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13 (1986). [CrossRef]
  10. D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85(16), 3477 (2004). [CrossRef]
  11. H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gas and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005). [CrossRef]
  12. R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “ntegrated optofluidic Mach-Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett. 93(1), 011106 (2008). [CrossRef]
  13. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003). [CrossRef] [PubMed]
  14. F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181 (2004). [CrossRef]
  15. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005). [CrossRef]
  16. T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical field on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006). [CrossRef]
  17. T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007). [CrossRef]
  18. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004). [CrossRef] [PubMed]
  19. V. J. Cadarso, A. Llobera, C. Fernandez-Sanchez, M. Darder, and C. Dominguez, “Hollow waveguide-based full-field absorbance biosensor,” Sens. Actuators B Chem. 139(1), 143–149 (2009). [CrossRef]
  20. A. Sugimura and D. Ishino, “Nematic director deformation induced by a periodic surface anchoring strength,” Thin Solid Films 438–439, 433–439 (2003). [CrossRef]
  21. J. He, B. Yan, X. Wang, B. Yu, and Y. Wang, “A novel polymer dispersed liquid crystal film prepared by reversible addition fragmentation chain transfer polymerization,” Eur. Polym. J. 43(9), 4037–4042 (2007). [CrossRef]
  22. Z. Zalevsky, F. Luan, W. J. Wadsworth, S. L. Saval, and T. A. Birks, “Liquid-crystal-based in-fiber tunable spectral structures,” Opt. Eng. 45(3), 035005 (2006). [CrossRef]
  23. S. Brugioni and R. Meucci, “Refractive indices of the nematic mixture E7 at 1550nm,” Infrared Phys. Technol. 49(3), 210–212 (2007). [CrossRef]
  24. H.-Y. Pan, H.-K. Chiu, and C.-C. Chen, “Liquid crystal infiltrated waveguide with distributed Bragg reflectors,” (unpublished data).
  25. S. C. Jeng, S. J. Hwang, and C. Y. Yang, “Tunable pretilt angles based on nanoparticles-doped planar liquid-crystal cells,” Opt. Lett. 34(4), 455–457 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited