OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11897–11905

Spherical silicon micromirrors bent by anodic bonding

Tong Wu, Takahiro Yamasaki, Ryohei Hokari, and Kazuhiro Hane  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11897-11905 (2011)
http://dx.doi.org/10.1364/OE.19.011897


View Full Text Article

Enhanced HTML    Acrobat PDF (1186 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose here a novel and stable method for fabricating spherical micromirror by bonding a flat freestanding single-crystal-silicon (SCS) membrane with a fulcrum on a glass substrate. Smooth convex spherical surface is achieved inside the fulcrum by the bending moment generated in the circumference of the SCS membrane. The surface profiles fit well with parabolic curves within 36nm RMS error indicating a good optical performance. By modifying the diameter of the fulcrum, we also demonstrate that it is possible to fabricate micromirrors with a wide range of focal length (0.4mm-1.6mm). The fabricated micromirrors are also used as the mold for replication of micro polymeric lenses. The surface profiles of the micromirrors are transferred to the polymeric replica with a high accuracy.

© 2011 OSA

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: February 22, 2011
Revised Manuscript: May 27, 2011
Manuscript Accepted: May 30, 2011
Published: June 3, 2011

Citation
Tong Wu, Takahiro Yamasaki, Ryohei Hokari, and Kazuhiro Hane, "Spherical silicon micromirrors bent by anodic bonding," Opt. Express 19, 11897-11905 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11897


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. P. Herzig, Micro-optics (Taylor&Francis, 1997).
  2. S. Audran, B. Faure, B. Mortini, J. Regolini, G. Schlatter, and G. Hadziioannou, “Study of mechanisms involved in photoresist microlens formation,” Microelectron. Eng. 83(4-9), 1087–1090 (2006). [CrossRef]
  3. G. Wang, S. Wang, and C.-H. Chin, “Fabrication and molding of gray-scale mask based aspheric refraction micro-lens array,” JSME Int. J., Ser. C 46(4), 1598–1603 (2003). [CrossRef]
  4. K. Totsu and M. Esashi, “Gray-scale photolithography using maskless exposure system,” J. Vac. Sci. Technol. B 23(4), 1487–1490 (2005). [CrossRef]
  5. T.-W. Lin, C.-F. Chen, J.-J. Yang, and Y.-S. Liao, “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process,” J. Micromech. Microeng. 18(9), 095029 (2008). [CrossRef]
  6. Y. Kanamori, J. Sato, T. Shimano, S. Nakamura, and K. Hane, “Polymer microstructure generated by laser stereo-lithography and its transfer to silicon substrate using reactive ion etching,” Microsyst. Technol. 13(8-10), 1411–1416 (2007). [CrossRef]
  7. S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Refractive Microlens Fabrication by Ink-Jet Process,” J. Sol-Gel Sci. Technol. 13(1/3), 177–182 (1998). [CrossRef]
  8. C.-T. Chen, Z.-F. Tseng, C.-L. Chiu, C.-Y. Hsu, and C.-T. Chuang, “Self-aligned hemispherical formation of microlenses from colloidal droplets on heterogeneous surfaces,” J. Micromech. Microeng. 19(2), 025002 (2009). [CrossRef]
  9. S. Lee, Y.-C. Jeong, and J.-K. Park, “Facile fabrication of close-packed microlens arrays using photoinduced surface relief structures as templates,” Opt. Express 15(22), 14550–14559 (2007). [CrossRef] [PubMed]
  10. S.- Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13(1), 98–103 (2003). [CrossRef]
  11. G. C. Firestone and A. Y. Yi, “Precision compression molding of glass microlenses and microlens arrays--an experimental study,” Appl. Opt. 44(29), 6115–6122 (2005). [CrossRef] [PubMed]
  12. P. Merz, H. J. Quenzer, H. Bernt, B. Wagner, and M. Zoberbier, “A novel micromachining technology for structuring borosilicate glass substrates,” in Proceedings of IEEE Conference on Solid State Sensors, Actuators and Microsystems (IEEE, 2003), pp.258–261.
  13. J.-T. Wu, W.-Y. Chang, and S.-Y. Yang, “Fabrication of a nano/micro hybrid lens using gas-assisted hot embossing with an anodic aluminum oxide (AAO) template,” J. Micromech. Microeng. 20(7), 075023 (2010). [CrossRef]
  14. L. Wu, S. Dooley, E. A. Watson, P. F. McManamon, and H. Xie, “A Tip-Tilt-Piston Micromirror Array for Optical Phased Array Applications,” J. Microelectromech. Syst. 19(6), 1450–1461 (2010). [CrossRef]
  15. H. M. Chu, T. Tokuda, M. Kimata, and K. Hane, “Compact Low-Voltage Operation Micromirror Based on High-Vacuum Seal Technology Using Metal Can,” J. Microelectromech. Syst. 19(4), 927–935 (2010). [CrossRef]
  16. Y. Hishinuma and E.-H. Yang, “Piezoelectric unimorph microactuator arrays for single-crystal silicon continuous-membrane deformable mirror,” J. Microelectromech. Syst. 15(2), 370–379 (2006). [CrossRef]
  17. I. W. Jung, Y.-A. Peter, E. Carr, J.-S. Wang, and O. Solgaard, “Single-Crystal-Silicon Continuous Membrane Deformable Mirror Array for Adaptive Optics in Space-Based Telescopes,” IEEE J. Sel. Top. Quantum Electron. 13(2), 162–167 (2007). [CrossRef]
  18. R. Hokari and K. Hane, “A varifocal convex micromirror driven by a bending moment,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1310–1316 (2009). [CrossRef]
  19. T.Wu, K.Hane, “High-precise spherical micromirror by bending silicon plate with metal pad,” (to be published).
  20. V. Dragoi, P. Lindner, T. Glinsner, M. Wimplinger, and S. Farrens, “Advanced Anodic Bonding Processes for MEMS Applications,” in Proceedings of Materials Research Society Symposium (Materials Research Society, 2004), 782, pp.A5.80.1–6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited