OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11906–11915

Suspended-core fiber Sagnac combined dual-random mirror Raman fiber laser

A. M. R. Pinto, Mikel Bravo, M. Fernandez-Vallejo, M. Lopez-Amo, J. Kobelke, and K. Schuster  »View Author Affiliations

Optics Express, Vol. 19, Issue 12, pp. 11906-11915 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1079 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In the present work, a multiwavelength fiber laser based in the combination of a double-random mirror and a suspended-core Sagnac interferometer is presented. The double-random mirror acts by itself as a random laser, presenting a 30dB SNR, as result of multiple Rayleigh scattering events produced in the dispersion compensating fibers by the Raman amplification. The suspended-core fiber Sagnac interferometer provides the multi peak channeled spectrum, which can be tuned by changing the length of the fiber. The result of this combination is a stable multiwavelength peak laser with a minimum of ~25dB SNR, which is highly sensitive to polarization induced variations.

© 2011 OSA

OCIS Codes
(140.3550) Lasers and laser optics : Lasers, Raman
(290.5870) Scattering : Scattering, Rayleigh
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 18, 2011
Revised Manuscript: May 27, 2011
Manuscript Accepted: May 29, 2011
Published: June 3, 2011

A. M. R. Pinto, Mikel Bravo, M. Fernandez-Vallejo, M. Lopez-Amo, J. Kobelke, and K. Schuster, "Suspended-core fiber Sagnac combined dual-random mirror Raman fiber laser," Opt. Express 19, 11906-11915 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008). [CrossRef]
  2. H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. Math. Gen. 38(49), 10497–10535 (2005). [CrossRef]
  3. A. A. Fotiadi, “Random lasers - an incoherent fibre laser,” Nat. Photonics 4(4), 204–205 (2010). [CrossRef]
  4. A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010). [CrossRef] [PubMed]
  5. A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011). [CrossRef] [PubMed]
  6. D. H. Kim and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Express 12(19), 4490–4495 (2004). [CrossRef] [PubMed]
  7. C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004). [CrossRef]
  8. D. Chen, S. Qin, L. Shen, H. Chi, and S. He, “An all-fiber multi-wavelength Raman laser based on a PCF Sagnac loop filter,” Microw. Opt. Technol. Lett. 48(12), 2416–2418 (2006). [CrossRef]
  9. A. M. R. Pinto, O. Frazao, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99(3), 391–395 (2010). [CrossRef]
  10. O. Frazão, C. Correia, J. L. Santos, and J. M. Baptista, “Raman fibre Bragg grating laser sensor with cooperative Rayleigh scattering in strain-temperature measurement,” Meas. Sci. Technol. 20(4), 045203 (2009). [CrossRef]
  11. A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature Raman laser sensor based in a suspended-core Fabry-Perot cavity and cooperative Rayleigh scattering,” 21st International Conference on Optical Fiber Sensors, Proc. SPIE 7753, 77531A (2011).
  12. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010). [CrossRef]
  13. C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems, Optics and Photonics (Elsevier Academic Press, 2005).
  14. O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland) 7(11), 2970–2983 (2007). [CrossRef]
  15. A. M. R. Pinto, O. Frazao, J. L. Santos, and M. Lopez-Amo, “Multiwavelength Raman fiber lasers using Hi-Bi photonic crystal fiber loop mirrors combined with random cavities,” J. Lightwave Technol. 29(10), 1482–1488 (2011). [CrossRef]
  16. A. R. Chraplyvy, “Limitations on lightwave communications imposed by optival-fiber nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990). [CrossRef]
  17. M. Fernández-Vallejo, S. Diaz, R. A. Perez-Herrera, R. Unzu, M. A. Quintela, J. M. López-Higuera, and M. López-Amo, “Comparison of the stability of ring resonator structures for multiwavelength fiber lasers using Raman or Er-doped fiber amplification,” IEEE J. Quantum Electron. 45(12), 1551–1557 (2009). [CrossRef]
  18. A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry–Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol. 28, 3149–3155 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited