OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 11951–11962

Simulation of an erbium-doped chalcogenide micro-disk mid-infrared laser source

Faleh Al Tal, Clara Dimas, Juejun Hu, Anu Agarwal, and Lionel C. Kimerling  »View Author Affiliations

Optics Express, Vol. 19, Issue 13, pp. 11951-11962 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (5840 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The feasibility of mid-infrared (MIR) lasing in erbium-doped gallium lanthanum sulfide (GLS) micro-disks was examined. Lasing condition at 4.5 µm signal using 800 nm pump source was simulated using rate equations, mode propagation and transfer matrix formulation. Cavity quality (Q) factors of 1.48 × 104 and 1.53 × 106 were assumed at the pump and signal wavelengths, respectively, based on state-of-the-art chalcogenide micro-disk resonator parameters. With an 80 µm disk diameter and an active erbium concentration of 2.8 × 1020 cm−3, lasing was shown to be possible with a maximum slope efficiency of 1.26 × 10−4 and associated pump threshold of 0.5 mW.

© 2011 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3500) Lasers and laser optics : Lasers, erbium
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 14, 2011
Revised Manuscript: May 13, 2011
Manuscript Accepted: May 13, 2011
Published: June 6, 2011

Faleh Al Tal, Clara Dimas, Juejun Hu, Anu Agarwal, and Lionel C. Kimerling, "Simulation of an erbium-doped chalcogenide micro-disk mid-infrared laser source," Opt. Express 19, 11951-11962 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. J. Eggleton, “Chalcogenide photonics: fabrication, devices and applications. Introduction,” Opt. Express 18(25), 26632–26634 (2010). [CrossRef] [PubMed]
  2. A. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995). [CrossRef]
  3. A. Zakery, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003). [CrossRef]
  4. N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010). [CrossRef] [PubMed]
  5. C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express 18(25), 26744–26753 (2010). [CrossRef] [PubMed]
  6. K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors,” J. Nonlinear Opt. Phys. Mater. 19(01), 75–99 (2010). [CrossRef]
  7. M. Ebrahim-Zadeh and I. Sorokina, Mid-Infrared Coherent Sources and Applications (Springer, 2007).
  8. A. Kenyon, “Recent Developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron. 26(4-5), 225–284 (2002). [CrossRef]
  9. A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010). [CrossRef] [PubMed]
  10. J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009). [CrossRef]
  11. J. Sanghera, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999). [CrossRef]
  12. V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, and M. Frumar, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010). [CrossRef]
  13. J. Fick, “High photoluminescence in erbium-doped chalcogenide thin films,” J. Non-Cryst. Solids 272(2-3), 200–208 (2000). [CrossRef]
  14. V. Nazabal, A. M. Jurdyc, P. Němec, M. L. Brandily-Anne, L. Petit, K. Richardson, P. Vinatier, C. Bousquet, T. Cardinal, and S. Pechev, “Amorphous Tm3+ doped sulfide thin films fabricated by sputtering,” Opt. Mater. 33(2), 220–226 (2010). [CrossRef]
  15. J. Frantz, J. Sanghera, L. Shaw, G. Villalobos, I. Aggarwal, and D. Hewak, “Sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Mater. Lett. 60(11), 1350–1353 (2006). [CrossRef]
  16. T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996). [CrossRef]
  17. T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33(5), 414–416 (1997). [CrossRef]
  18. A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002). [CrossRef]
  19. A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1381–1388 (2002). [CrossRef]
  20. K. Sasagawa, K. Kusawake, J. Ohta, and M. Nunoshita, “Nd-doped tellurite glass microsphere laser,” Electron. Lett. 38(22), 1355–1357 (2002). [CrossRef]
  21. K. Sasagawa, Z.-o. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325–4327 (2004). [CrossRef]
  22. J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 μm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005). [CrossRef]
  23. G. R. Elliott, G. S. Murugan, J. S. Wilkinson, M. N. Zervas, and D. W. Hewak, “Chalcogenide glass microsphere laser,” Opt. Express 18(25), 26720–26727 (2010). [CrossRef] [PubMed]
  24. F. Prudenzano, L. Mescia, L. A. Allegretti, M. De Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Design of Er3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009). [CrossRef]
  25. T. Schweizer, D. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1(4), 102–107 (1997). [CrossRef] [PubMed]
  26. J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18(2), 1469–1478 (2010). [CrossRef] [PubMed]
  27. H. Yayama, “Refractive index dispersion of gallium lanthanum sulfide and oxysulfide glasses,” J. Non-Cryst. Solids 239(1-3), 187–191 (1998). [CrossRef]
  28. H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  29. S. Hooker, Laser Physics (Oxford University Press, 2010). [PubMed]
  30. K. Kadono, “Rate equation analysis and energy transfer of Er3+-doped Ga2S3–GeS2–La2S3 glasses,” J. Non-Cryst. Solids 331(1-3), 79–90 (2003). [CrossRef]
  31. M. Desario, L. Mescia, F. Prudenzano, F. Smektala, F. Deseveday, V. Nazabal, J. Troles, and L. Brilland, “Feasibility of Er3+-doped, Ga5Ge20Sb10S65 chalcogenide microstructured optical fiber amplifiers,” Opt. Laser Technol. 41(1), 99–106 (2009). [CrossRef]
  32. R. Quimby, “Multiphonon energy gap law in rare-earth doped chalcogenide glass,” J. Non-Cryst. Solids 320(1-3), 100–112 (2003). [CrossRef]
  33. B. M. Walsh, “Judd-Ofelt theory: principles and practices,” in Advances in Spectroscopy for Lasers and Sensing, B. Bartolo and O. Forte, eds. (Kluwer Academic Publishers, 2006), pp. 403–433.
  34. D. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964). [CrossRef]
  35. J. G. Solé, L. E. Bausá, and D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids (John Wiley and Sons, Ltd., 2005).
  36. FIMMMWAVE: Waveguides solver (Photon Design, 34 Leopold Street, Oxford, OX41TW, U.K.).
  37. R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63(10), 1310–1312 (1993). [CrossRef]
  38. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005). [CrossRef] [PubMed]
  39. Data Sheet, “Gallium lanthanum sulphide optical material—internal transmission,” ChG Southampton Ltd., University of Southampton, Highfield, Southampton, SO17 1BJ, U.K. (2010).
  40. T. Schweizer, “Rare-earth-doped gallium lanthanum sulphide glasses for mid-infrared fibre lasers,” University of Southampton, Faculty of Engineering and Applied Science, Department of Electronics and Computer Science, Doctoral Thesis (2000).
  41. C. Ye, “Spectral properties of Er3+-doped gallium lanthanum sulphide glass,” J. Non-Cryst. Solids 208(1-2), 56–63 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited