OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 11992–11999

Femtosecond laser fabrication of birefringent directional couplers as polarization beam splitters in fused silica

Luís A. Fernandes, Jason R. Grenier, Peter R. Herman, J. Stewart Aitchison, and Paulo V. S. Marques  »View Author Affiliations


Optics Express, Vol. 19, Issue 13, pp. 11992-11999 (2011)
http://dx.doi.org/10.1364/OE.19.011992


View Full Text Article

Enhanced HTML    Acrobat PDF (1837 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Integrated polarization beam splitters based on birefringent directional couplers are demonstrated. The devices are fabricated in bulk fused silica glass by femtosecond laser writing (300 fs, 150 nJ at 500 kHz, 522 nm). The birefringence was measured from the spectral splitting of the Bragg grating resonances associated with the vertically and horizontally polarized modes. Polarization splitting directional couplers were designed and demonstrated with 0.5 dB/cm propagation losses and −19 dB and −24 dB extinction ratios for the polarization splitting.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3390) Lasers and laser optics : Laser materials processing
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Integrated Optics

History
Original Manuscript: March 29, 2011
Revised Manuscript: May 13, 2011
Manuscript Accepted: May 20, 2011
Published: June 6, 2011

Citation
Luís A. Fernandes, Jason R. Grenier, Peter R. Herman, J. Stewart Aitchison, and Paulo V. S. Marques, "Femtosecond laser fabrication of birefringent directional couplers as polarization beam splitters in fused silica," Opt. Express 19, 11992-11999 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-11992


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996). [CrossRef] [PubMed]
  2. S. Eaton, W. Chen, H. Zhang, R. Iyer, J. Li, M. Ng, S. Ho, J. S. Aitchison, and P. R. Herman, “Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths,” J. Lightwave Technol. 27, 1079–1085 (2009). [CrossRef]
  3. H. Zhang, S. Eaton, and P. R. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett. 32, 2559–2561 (2007). [CrossRef] [PubMed]
  4. R. Osellame, N. Chiodo, G. Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. r Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29, 1900–1902 (2004). [CrossRef] [PubMed]
  5. M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique,” Opt. Lett. 34, 247–249 (2009). [CrossRef] [PubMed]
  6. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003). [CrossRef]
  7. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, “Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator,” Opt. Lett. 30, 1060–1062 (2005). [CrossRef] [PubMed]
  8. K. Suzuki, V. Sharma, J. Fujimoto, E. Ippen, and Y. Nasu, “Characterization of symmetric [3 x 3] directional couplers fabricated by direct writing with a femtosecond laser oscillator,” Opt. Express 14, 2335–2343 (2006). [CrossRef] [PubMed]
  9. S. Eaton, H. Zhang, M. Ng, J. Li, W. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008). [CrossRef] [PubMed]
  10. Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express 14, 8360–8366 (2006). [CrossRef] [PubMed]
  11. V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett. 29, 1312–1314 (2004). [CrossRef] [PubMed]
  12. P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass”, J. Appl. Phys. 95, 5280 (2004). [CrossRef]
  13. E. Bricchi, B. Klappauf, and P. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29, 119–121 (2004). [CrossRef] [PubMed]
  14. R. Taylor, C. Hnatovsky, E. Simova, P. Rajeev, D. Rayner, and P. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32, 2888–2890 (2007). [CrossRef] [PubMed]
  15. W. Cai, A. R. Libertun, and R. Piestun, “Polarization selective computer-generated holograms realized in glass by femtosecond laser induced nanogratings,” Opt. Express 14, 3785–3791 (2006). [CrossRef] [PubMed]
  16. D. Papazoglou and M. Loulakis, “Embedded birefringent computer-generated holograms fabricated by femtosecond laser pulses,” Opt. Lett. 31, 1441–1443 (2006). [CrossRef] [PubMed]
  17. M. Beresna and P. G. Kazansky, “Polarization diffraction grating produced by femtosecond laser nanostructuring in glass,” Opt. Lett. 35, 1662–1664 (2010). [CrossRef] [PubMed]
  18. L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100, 1–6 (2010). [CrossRef]
  19. G. Marshall, A. Politi, J. Matthews, P. Dekker, M. Ams, M. Withford, and J. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12546–12554 (2009). [CrossRef] [PubMed]
  20. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010). [CrossRef]
  21. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984 (IEEE, New York, 1984), 175–179;IBM Tech. Discl. Bull. 28, 31533163 (1985). [PubMed]
  22. S. Betti, G. De Marchis, and E. Iannone, “Polarization modulated direct detection optical transmission systems,” J. Lightwave Technol. 10, 1985–1997 (1992). [CrossRef]
  23. L. Shah, A. Arai, S. Eaton, and P. R. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13, 1999–2006 (2005). [CrossRef] [PubMed]
  24. W. Chen, S. Eaton, H. Zhang, and P. R. Herman, “Broadband directional couplers fabricated in bulk glass with high repetition rate femtosecond laser pulses,” Opt. Express 16, 11470–11480 (2008). [CrossRef] [PubMed]
  25. R. Hereth and G. Schiffner, “Broad-band optical directional couplers and polarization splitters,” J. Lightwave Technol. 7, 925–930 (1989). [CrossRef]
  26. L. Zhang, C. Yang, C. Yu, T. Luo, and A. Willner, “PCF-based polarization splitters with simplified structures,” J. Lightwave Technol. 23, 3558- (2005). [CrossRef]
  27. Y. Yue, L. Zhang, J. Yang, R. Beausoleil, and A. Willner, “Silicon-on-insulator polarization splitter using two horizontally slotted waveguides,” Opt. Lett. 35, 1364–1366 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited