OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12014–12020

Near field phase mapping exploiting intrinsic oscillations of aperture NSOM probe

Liron Stern, Boris Desiatov, Ilya Goykhman, Gilad M. Lerman, and Uriel Levy  »View Author Affiliations

Optics Express, Vol. 19, Issue 13, pp. 12014-12020 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1594 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An innovative, simple, compact and low cost approach for phase mapping based on the intrinsic modulation of an aperture Near Field Scanning Optical Microscope probe is analyzed and experimentally demonstrated. Several nanoscale silicon waveguides are phase-mapped using this approach, and the different modes of propagation are obtained via Fourier analysis. The obtained measured results are in good agreement with the effective indexes of the modes calculated by electromagnetic simulations. Owing to its simplicity and effectiveness, the demonstrated system is a potential candidate for integration with current near field systems for the characterization of nanophotonic components and devices.

© 2011 OSA

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(130.2790) Integrated optics : Guided waves
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: April 7, 2011
Revised Manuscript: May 4, 2011
Manuscript Accepted: May 26, 2011
Published: June 6, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Liron Stern, Boris Desiatov, Ilya Goykhman, Gilad M. Lerman, and Uriel Levy, "Near field phase mapping exploiting intrinsic oscillations of aperture NSOM probe," Opt. Express 19, 12014-12020 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through [lambda]/16 diameter apertures,” Ultramicroscopy 13(3), 227–231 (1984). [CrossRef]
  2. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651 (1984). [CrossRef]
  3. H. E. Jackson, S. M. Lindsay, C. D. Poweleit, D. H. Naghski, G. N. De Brabander, and J. T. Boyd, “Near field measurements of optical channel waveguide structures,” Ultramicroscopy 61(1-4), 295–298 (1995). [CrossRef]
  4. S. Bourzeix, J. M. Moison, F. Mignard, F. Barthe, A. C. Boccara, C. Licoppe, B. Mersali, M. Allovon, and A. Bruno, “Near-field optical imaging of light propagation in semiconductor waveguide structures,” Appl. Phys. Lett. 73(8), 1035–1037 (1998). [CrossRef]
  5. R. J. P. Engelen, T. J. Karle, H. Gersen, J. P. Korterik, T. F. Krauss, L. Kuipers, and N. F. van Hulst, “Local probing of Bloch mode dispersion in a photonic crystal waveguide,” Opt. Express 13(12), 4457–4464 (2005). [CrossRef] [PubMed]
  6. U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62(4), 458–461 (1989). [CrossRef] [PubMed]
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  8. T. Zentgraf, J. Dorfmuller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008). [CrossRef] [PubMed]
  9. M. L. Balistreri, J. P. Korterik, L. Kuipers, and N. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett. 85(2), 294–297 (2000). [CrossRef] [PubMed]
  10. A. Nesci, R. Dändliker, and H. P. Herzig, “Quantitative amplitude and phase measurement by use of a heterodyne scanning near-field optical microscope,” Opt. Lett. 26(4), 208–210 (2001). [CrossRef]
  11. P. Tortora, M. Abashin, I. Märki, W. Nakagawa, L. Vaccaro, M. Salt, H. P. Herzig, U. Levy, and Y. Fainman, “Observation of amplitude and phase in ridge and photonic crystal waveguides operating at 1.55 microm by use of heterodyne scanning near-field optical microscopy,” Opt. Lett. 30(21), 2885–2887 (2005). [CrossRef] [PubMed]
  12. M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Visualization of mode transformation in a planar waveguide splitter by near-field optical phase imaging,” Appl. Phys. Lett. 79(7), 910 (2001). [CrossRef]
  13. E. Fluck, M. Hammer, A. M. Otter, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Amplitude and phase evolution of optical fields inside periodic photonic structures,” J. Lightwave Technol. 21(5), 1384–1393 (2003). [CrossRef]
  14. J. Jose, F. B. Segerink, J. P. Korterik, J. L. Herek, and H. L. Offerhaus, “Imaging of surface plasmon polariton interference using phase-sensitive photon scanning tunneling microscope,” Appl. Phys. A (2011). [CrossRef]
  15. M. Spasenović, D. van Oosten, E. Verhagen, and L. Kuipers, “Measurements of modal symmetry in subwavelength plasmonic slot waveguides,” Appl. Phys. Lett. 95(20), 203109 (2009). [CrossRef]
  16. U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett. 98(24), 243901 (2007). [CrossRef] [PubMed]
  17. E. Schonbrun, Q. Wu, W. Park, T. Yamashita, C. J. Summers, M. Abashin, and Y. Fainman, “Wave front evolution of negatively refracted waves in a photonic crystal,” Appl. Phys. Lett. 90(4), 41113–3 (2007). [CrossRef]
  18. A. L. Campillo and J. W. P. Hsu, “Intensity and phase mapping of guided light in LiNbO3 waveguides with an interferometric near-field scanning optical microscope,” Appl. Opt. 42(36), 7149–7156 (2003). [CrossRef]
  19. H. W. Kihm, Q. H. Kihm, D. S. Kim, K. J. Ahn, and J. H. Kang, “Phase-sensitive imaging of diffracted light by single nanoslits: measurements from near to far field,” Opt. Express 18(15), 15725–15731 (2010). [CrossRef] [PubMed]
  20. Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19(3), 159–161 (1994). [CrossRef] [PubMed]
  21. B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4-6), 321–328 (2000). [CrossRef]
  22. R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000). [CrossRef] [PubMed]
  23. I. Stefanon, S. Blaize, A. Bruyant, S. Aubert, G. Lerondel, R. Bachelot, and P. Royer, “Heterodyne detection of guided waves using a scattering-type Scanning Near-Field Optical Microscope,” Opt. Express 13(14), 5553–5564 (2005). [CrossRef] [PubMed]
  24. L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S.- Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” J. Opt. Soc. Am. B 23(5), 823–833 (2006). [CrossRef]
  25. B. Deutsch, R. Hillenbrand, and L. Novotny, “Near-field amplitude and phase recovery using phase-shifting interferometry,” Opt. Express 16(2), 494–501 (2008). [CrossRef] [PubMed]
  26. B. Desiatov, I. Goykhman, and U. Levy, “Demonstration of submicron square-like silicon waveguide using optimized LOCOS process,” Opt. Express 18(18), 18592–18597 (2010). [CrossRef] [PubMed]
  27. T. Grosjean and D. Courjon, “Polarization filtering induced by imaging systems: effect on image structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046611 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited