OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12021–12026

Tuning of superconducting niobium nitride terahertz metamaterials

Jingbo Wu, Biaobing Jin, Yuhua Xue, Caihong Zhang, Hao Dai, Labao Zhang, Chunhai Cao, Lin Kang, Weiwei Xu, Jian Chen, and Peiheng Wu  »View Author Affiliations

Optics Express, Vol. 19, Issue 13, pp. 12021-12026 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1616 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Superconducting planar terahertz (THz) metamaterials (MMs), with unit cells of different sizes, are fabricated on 200 nm-thick niobium nitride (NbN) films deposited on MgO substrates. They are characterized using THz time domain spectroscopy over a temperature range from 8.1 K to 300 K, crossing the critical temperature of NbN films. As the gap frequency (fg = 2Δ0/h, where Δ0 is the energy gap at 0 K and h is the Plank constant) of NbN is 1.18 THz, the experimentally observed THz spectra span a frequency range from below fg to above it. We have found that, as the resonance frequency approaches fg , the relative tuning range of MMs is quite wide (30%). We attribute this observation to the large change of kinetic inductance of superconducting film.

© 2011 OSA

OCIS Codes
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: April 18, 2011
Revised Manuscript: May 23, 2011
Manuscript Accepted: May 30, 2011
Published: June 6, 2011

Jingbo Wu, Biaobing Jin, Yuhua Xue, Caihong Zhang, Hao Dai, Labao Zhang, Chunhai Cao, Lin Kang, Weiwei Xu, Jian Chen, and Peiheng Wu, "Tuning of superconducting niobium nitride terahertz metamaterials," Opt. Express 19, 12021-12026 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004). [CrossRef] [PubMed]
  2. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007). [CrossRef]
  3. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004). [CrossRef] [PubMed]
  4. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006). [CrossRef] [PubMed]
  5. H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 99, 1–10 (2010).
  6. W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J. 1(2), 99–118 (2009). [CrossRef]
  7. R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor, and W. Zhang, “Effect of metal permittivity on resonant properties of terahertz metamaterials,” Opt. Lett. 33(13), 1506–1508 (2008). [CrossRef] [PubMed]
  8. R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express 16(9), 6537–6543 (2008). [CrossRef] [PubMed]
  9. R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010). [CrossRef]
  10. J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010). [CrossRef]
  11. V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, “Temperature control of Fano resonances and transmission in superconducting metamaterials,” Opt. Express 18(9), 9015–9019 (2010). [CrossRef] [PubMed]
  12. B. B. Jin, C. H. Zhang, S. Engelbrecht, A. Pimenov, J. B. Wu, Q. Y. Xu, C. H. Cao, J. Chen, W. W. Xu, L. Kang, and P. H. Wu, “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Opt. Express 18(16), 17504–17509 (2010). [CrossRef] [PubMed]
  13. H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010). [CrossRef]
  14. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006). [CrossRef]
  15. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2006). [CrossRef]
  16. H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007). [CrossRef] [PubMed]
  17. J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005). [CrossRef] [PubMed]
  18. L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011). [CrossRef]
  19. A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119 (2008). [CrossRef]
  20. J. F. O’Hara, E. Smirnova, A. K. Azad, H. T. Chen, and A. J. Taylor, “Effects of microstructure variations on macroscopic terahertz metafilm properties,” Act. Passive Electron. Compon. 2007, 49691 (2007).
  21. T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Second Edition, (Cambridge University Press, 2004), Chap. 4.
  22. M. Tinkham, Introduction to superconductivity, (McGraw-Hill, 1980)
  23. M. J. Lancaster, Passive Microwave Device Applications of High-Temperature superconductors, (Cambridge University Press, 2006), Chap. 1.
  24. S. Hensen, G. Müller, C. T. Rieck, and K. Scharnberg, “In-plane surface impedance of epitaxial YBa2Cu3O7+Δ films: Comparison of experimental data taken at 87 GHz with d- and s-wave models of superconductivity,” Phys. Rev. B 56(10), 6237–6264 (1997). [CrossRef]
  25. T. Hao, C. J. Stevens, and D. J. Edwards, “Optimization of Metamaterials by Q factor,” Electron. Lett. 41(11), 653–654 (2005). [CrossRef]
  26. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011). [CrossRef] [PubMed]
  27. R. Singh, C. Rockstuhl, and W. Zhang, “Strong influence of packing density in terahertz metamaterials,” Appl. Phys. Lett. 97(24), 241108 (2010). [CrossRef]
  28. R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited