OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12045–12052

Tunable negative-tap photonic microwave filter based on a cladding-mode coupler and an optically injected laser of large detuning

Sze-Chun Chan, Qing Liu, Zhu Wang, and Kin Seng Chiang  »View Author Affiliations

Optics Express, Vol. 19, Issue 13, pp. 12045-12052 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1429 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A tunable negative-tap photonic microwave filter using a cladding-mode coupler together with optical injection locking of large wavelength detuning is demonstrated. Continuous and precise tunability of the filter is realized by physically sliding a pair of bare fibers inside the cladding-mode coupler. Signal inversion for the negative tap is achieved by optical injection locking of a single-mode semiconductor laser. To couple light into and out of the cladding-mode coupler, a pair of matching long-period fiber gratings is employed. The large bandwidth of the gratings requires injection locking of an exceptionally large wavelength detuning that has never been demonstrated before. Experimentally, injection locking with wavelength detuning as large as 27 nm was achieved, which corresponded to locking the 36-th side mode. Microwave filtering with a free-spectral range tunable from 88.6 MHz to 1.57 GHz and a notch depth larger than 35 dB was obtained.

© 2011 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(140.3520) Lasers and laser optics : Lasers, injection-locked
(350.4010) Other areas of optics : Microwaves

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 15, 2011
Revised Manuscript: May 24, 2011
Manuscript Accepted: May 27, 2011
Published: June 7, 2011

Sze-Chun Chan, Qing Liu, Zhu Wang, and Kin Seng Chiang, "Tunable negative-tap photonic microwave filter based on a cladding-mode coupler and an optically injected laser of large detuning," Opt. Express 19, 12045-12052 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009). [CrossRef]
  2. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech. 54, 832–846 (2006). [CrossRef]
  3. J. Capmany, B. O. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006). [CrossRef]
  4. S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fiber-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995). [CrossRef]
  5. J. Capmany, J. Mora, B. Ortega, and D. Pastor, “Microwave photonic filters using low-cost sources featuring tenability, reconfigurability and negative coefficients,” Opt. Express 13, 1412–1417 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-5-1412 . [CrossRef] [PubMed]
  6. T. Chen, X. K. Yi, T. Huang, and R. A. Minasian, “Multiple-bipolar-tap tunable spectrum sliced microwave photonic filter,” Opt. Lett. 35, 3934–3936 (2010). [CrossRef] [PubMed]
  7. F. Zeng, J. Wang, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett. 30, 2203–2205 (2005). [CrossRef] [PubMed]
  8. J. Wang, F. Zeng, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on PM-IM conversion,” IEEE Photon. Technol. Lett. 17, 2176–2178 (2005). [CrossRef]
  9. S. P. Li, K. S. Chiang, A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “A novel tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1207–1209 (2000). [CrossRef]
  10. S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46, 421–428 (2010). [CrossRef]
  11. D. Norton, S. Johns, C. Keefer, and R. Soref, “Tunable microwave filtering using high dispersion fiber time delays,” IEEE Photon. Technol. Lett. 6, 831–832 (1994). [CrossRef]
  12. E. H. W. Chan and R. A. Minasian, “Widely tunable, high-FSR, coherence-free microwave photonic notch filter,” J. Lightwave Technol. 26, 922–927 (2008). [CrossRef]
  13. S. Mansoori and A. Mitchell, “RF transversal filter using an AOTF,” IEEE Photon. Technol. Lett. 16, 879–881 (2004). [CrossRef]
  14. D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13, 726–728 (2001). [CrossRef]
  15. Z. Wang, K. S. Chiang, and Q. Liu, “All-fiber tunable microwave photonic filter based on a cladding-mode coupler,” IEEE Photon. Technol. Lett. 22, 1241–1243 (2010). [CrossRef]
  16. Z. Wang, K. S. Chiang, and Q. Liu, “Microwave photonic filter based on circulating a cladding mode in a fiber ring resonator,” Opt. Lett. 35, 769–771 (2010). [CrossRef] [PubMed]
  17. T. B. Simpson and J. M. Liu, “Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers,” J. Appl. Phys. 73, 2587–2589 (1993). [CrossRef]
  18. S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15, 14921–14935 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14921 . [CrossRef]
  19. E. K. Lau, H. K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44, 90–99 (2008). [CrossRef]
  20. J. M. Luo and M. Osinski, “Stable-locking bandwidth in sidemode injection locked semiconductor lasers,” Electron. Lett. 27, 1737–1739 (1991). [CrossRef]
  21. Y. Hong and K. A. Shore, “Locking characteristics of a side-mode injected semiconductor laser,” IEEE J. Quantum Electron. 35, 1713–1717 (1999). [CrossRef]
  22. Y. Hong, K. A. Shore, J. S. Lawrence, and D. M. Kane, “Wavelength switching by positively detuned side-mode injection in semiconductor lasers,” Appl. Phys. Lett. 76, 3170–3172 (2000). [CrossRef]
  23. S. P. Li, K. T. Chan, and C. Y. Lou, “Wavelength switching of picosecond pulses in a self-seeded Fabry-Perot semiconductor laser with external fiber Bragg grating cavities by optical injection,” IEEE Photon. Technol. Lett. 10, 1094–1096 (1998). [CrossRef]
  24. X. Wang and K. T. Chan, “Tunable all-optical incoherent bipolar delay-line filter using injection-locked Fabry-Perot laser and fiber Bragg gratings,” Electron. Lett. 36, 2001–2002 (2000). [CrossRef]
  25. C. L. Tseng, C. K. Liu, J. J. Jou, W. Y. Lin, C. W. Shih, S. C. Lin, S. L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Perot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20, 794–796 (2008). [CrossRef]
  26. M. R. Uddin and Y. H. Won, “All-optical wavelength conversion by the modulation of self-locking state of single-mode FP-LD,” IEEE Photon. Technol. Lett. 22, 290–292 (2010). [CrossRef]
  27. Y. Liu, K. S. Chiang, Y. J. Rao, Z. L. Ran, and T. Zhu, “Light coupling between two parallel CO2-laser written long-period fiber gratings,” Opt. Express 15, 17645–17651 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17645 [CrossRef] [PubMed]
  28. Y. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, “Glass structure changes in CO2-laser writing of long-period fiber gratings in boron-doped single-mode fibers,” J. Lightwave Technol. 27, 857–863 (2009). [CrossRef]
  29. K. S. Chiang, F. Y. M. Chan, and M. N. Ng, “Analysis of two parallel long-period fiber gratings,” J. Lightwave Technol. 22, 1358–1366 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited