OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12108–12118

Low-loss VIS/IR-XUV beam splitter for high-power applications

Ioachim Pupeza, Ernst E. Fill, and Ferenc Krausz  »View Author Affiliations


Optics Express, Vol. 19, Issue 13, pp. 12108-12118 (2011)
http://dx.doi.org/10.1364/OE.19.012108


View Full Text Article

Enhanced HTML    Acrobat PDF (1434 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a low-loss VIS/IR-XUV beam splitter, suitable for high-power operation. The spatial separation of the VIS/IR and XUV components of a beam is achieved by the wedged top layer of a dielectric multilayer structure, onto which the beam is impinging under Brewster’s angle (for VIS/IR). With a fused silica wedge with an angle of 0.5° we achieve a separation angle of 2.2° and an IR reflectivity of 0.9995. Typical XUV reflectivities amount to 0.1–0.2. The novel element is mechanically robust, exhibiting two major advantages over free-standing Brewster plates: (i) a significant improvement of heat conduction and (ii) easier handling, in particular for high-optical-quality fabrication. The beam splitter could be used as an output coupler for intracavity-generated XUV radiation, promising a boost of the power regime of current MHz-HHG experiments. It is also suited for single-pass experiments and as a beam combiner for pump-probe experiments.

© 2011 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(340.7480) X-ray optics : X-rays, soft x-rays, extreme ultraviolet (EUV)

ToC Category:
X-ray Optics

History
Original Manuscript: April 29, 2011
Revised Manuscript: May 30, 2011
Manuscript Accepted: May 30, 2011
Published: June 7, 2011

Citation
Ioachim Pupeza, Ernst E. Fill, and Ferenc Krausz, "Low-loss VIS/IR-XUV beam splitter for high-power applications," Opt. Express 19, 12108-12118 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12108


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation (Cambridge University Press, 1999).
  2. P. Jaegle, Coherent Sources of XUV Radiation (Springer, 2006).
  3. I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, E. E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I (2011). [CrossRef]
  4. C. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005). [CrossRef] [PubMed]
  5. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94, 193201 (2005).
  6. I. Hartl, T. R. Schibli, A. Marcinkevicius, D. C. Yost, D. D. Hudson, M. E. Fermann, and J. Ye, “Cavity-enhanced similariton Yb-fiber laser frequency comb: 3 × 1014 W/cm2 peak intensity at 136MHz,” Opt. Lett. 32, 2870–2872 (2007). [CrossRef] [PubMed]
  7. A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008). [CrossRef] [PubMed]
  8. D. C. Yost, T. R. Schibli, and J. Ye, “Efficient output coupling of intracavity high harmonic generation,” Opt. Lett. 33, 1099–1101 (2008). [CrossRef] [PubMed]
  9. I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high repetition rate enhancement cavity,” Opt. Lett. 35, 2052–2054 (2010). [CrossRef] [PubMed]
  10. J. Kaster, I. Pupeza, T. Eidam, C. Jocher, E. Fill, J. Limpert, R. Holzwarth, B. Bernhardt, T. Udem, T. W. Hänsch, A. Tünnermann, and F. Krausz, “Towards MW average powers in ultrafast high-repetition-rate enhancement cavities,” High Intensity Lasers and High Field Phenomena (HILAS) Conference, paper HFB4 (2011).
  11. T. Eidam, S. Hanf, E. Seise, T. Andersen, V. T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010). [CrossRef] [PubMed]
  12. P. Rußbüldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35, 4169–4171 (2010). [CrossRef]
  13. I. Pupeza, X. Gu, E. Fill, T. Eidam, J. Limpert, A. Tünnermann, F. Krausz, and Th. Udem, “Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry,” Opt. Express 18, 26784–26195 (2010). [CrossRef]
  14. K. D. Moll, R. J. Jones, and J. Ye, “Nonlinear dynamics inside femtosecond enhancement cavities,” Opt. Express 13, 1672–1678 (2005). [CrossRef] [PubMed]
  15. R. Paschotta, “Beam quality deterioration of lasers caused by intracavity beam distortions,” Opt. Express 14, 6069–6074 (2006). [CrossRef] [PubMed]
  16. Y.-Y. Yang, F. Sümann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19, 1955–1962 (2011).
  17. K. D. Moll, R. J. Jones, and J. Ye, “Output coupling methods for cavity-based high-harmonic generation,” Opt. Express 14, 8189–8197 (2006). [CrossRef] [PubMed]
  18. A. Ozawa, A. Vernaleken, W. Schneider, I. Gotlibovych, Th. Udem, and T. W. Hänsch, “Non-collinear high harmonic generation: a promising outcoupling method for cavity-assisted XUV generation,” Opt. Express 16, 6233–6239 (2008). [CrossRef] [PubMed]
  19. J. Weitenberg, P. Rußbüldt, T. Eidam, and I. Pupeza, “Transverse mode tailoring in a high-finesse femtosecond enhancement cavity,” Opt. Express 19, 9551–9561 (2011). [CrossRef] [PubMed]
  20. I. Pupeza, J. Weitenberg, P. Rußbüldt, T. Eidam, J. Limpert, E. Fill, Th. Udem, H.-D. Hoffmann, R. Poprawe, A. Tünnermann, and F. Krausz, “Tailored transverse modes in high-finesse femtosecond enhancement cavities,” CLEO 2011, Baltimore, paper QMJ7 (2011).
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1991), Vols. 1,2.
  22. G. Tempea, V. Yakovlev, B. Bacovic, F. Krausz, and K. Ferencz, “Tilted-front-interface chirped mirrors,” J. Opt. Soc. Am. B 18, 1747–1750 (2001). [CrossRef]
  23. G. Steinmeyer, “Brewster-angled chirped mirrors for high-fidelity dispersion compensation and bandwidths exceeding one optical octave,” Opt. Express 11, 2385–2396 (2003). [CrossRef] [PubMed]
  24. T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92, 9–12 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited