OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12164–12171

Single rolled-up InGaAs/GaAs quantum dot microtubes integrated with silicon-on-insulator waveguides

Zhaobing Tian, Venkat Veerasubramanian, Pablo Bianucci, Shouvik Mukherjee, Zetian Mi, Andrew G. Kirk, and David V. Plant  »View Author Affiliations


Optics Express, Vol. 19, Issue 13, pp. 12164-12171 (2011)
http://dx.doi.org/10.1364/OE.19.012164


View Full Text Article

Enhanced HTML    Acrobat PDF (1214 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on single rolled-up microtubes integrated with silicon-on-insulator waveguides. Microtubes with diameters of ~7 μm, wall thicknesses of ~250 nm, and lengths greater than 100 μm are fabricated by selectively releasing a coherently strained InGaAs/GaAs quantum dot layer from the handling GaAs substrate. The microtubes are then transferred from their host substrate to silicon-on-insulator waveguides by an optical fiber abrupt taper. The Q-factor of the waveguide coupled microtube is measured to be 1.5×105, the highest recorded for a semiconductor microtube cavity to date. The insertion loss and extinction ratio of the microtube are 1 dB and 34 dB respectively. By pumping the microtube with a 635 nm laser, the resonance wavelength is shifted by 0.7 nm. The integration of InGaAs/GaAs microtubes with silicon-on-insulator waveguides provides a simple, low loss, high extinction passive filter solution in the C+L band communication regime.

© 2011 OSA

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(140.4780) Lasers and laser optics : Optical resonators
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Integrated Optics

History
Original Manuscript: April 1, 2011
Revised Manuscript: June 6, 2011
Manuscript Accepted: June 6, 2011
Published: June 8, 2011

Citation
Zhaobing Tian, Venkat Veerasubramanian, Pablo Bianucci, Shouvik Mukherjee, Zetian Mi, Andrew G. Kirk, and David V. Plant, "Single rolled-up InGaAs/GaAs quantum dot microtubes integrated with silicon-on-insulator waveguides," Opt. Express 19, 12164-12171 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12164


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Bruns, T. Mitze, M. Schnarrenberger, L. Zimmermann, K. Voigt, M. Krieg, J. Kreissl, K. Janiak, T. Hartwich, and K. Petermann, “SOI-based optical board technology,” AEU-Int. J. Electron. C. 61, 158–162 (2007). [CrossRef]
  2. Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101(12), 127403 (2008). [CrossRef] [PubMed]
  3. F. Li, Z. T. Mi, and S. Vicknesh, “Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes,” Opt. Lett. 34(19), 2915–2917 (2009). [CrossRef] [PubMed]
  4. F. Li and Z. T. Mi, “Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers,” Opt. Express 17(22), 19933–19939 (2009). [CrossRef] [PubMed]
  5. S. Vicknesh, F. Li, and Z. T. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett. 94(8), 081101 (2009). [CrossRef]
  6. X. Li, “Strain induced semiconductor nanotubes: from formation process to device applications,” J. Phys. D Appl. Phys. 41(19), 193001 (2008). [CrossRef]
  7. Z. Tian, F. Li, Z. T. Mi, and D. V. Plant, “Controlled transfer of single rolled-up InGaAs–GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers,” IEEE Photon. Technol. Lett. 22(5), 311–313 (2010). [CrossRef]
  8. A. Meldrum, P. Bianucci, and F. Marsiglio, “Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express 18(10), 10230–10246 (2010). [CrossRef] [PubMed]
  9. A. V. Prinz, V. Y. Prinz, and V. A. Seleznev, “Semiconductor micro- and nanoneedles for microinjections and ink-jet printing,” Microelectron. Eng. 67–68, 782–788 (2003). [CrossRef]
  10. V. Veerasubramanian, A. G. Kirk, G. Beaudin, A. Giguère, B. LeDrogoff, and V. Aimez, “Waveguide coupled drop filters on SOI using vertical sidewalled grating resonators”, 23rd Annual Meeting of the IEEE Photonics Society, 634–635 (2010).
  11. G. T. Reed, Silicon Photonics: The State of the Art, (John Wiley & Sons, 2008).
  12. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002). [CrossRef]
  13. G. S. Murugan, J. S. Wilkinson, and M. N. Zervas, “Selective excitation of whispering gallery modes in a novel bottle microresonator,” Opt. Express 17(14), 11916–11925 (2009). [CrossRef]
  14. S. Adachi, “Optical Properties” in Properties of group-IV, III–V and II–VI semiconductors, 241(John Wiley & Sons, 2005).
  15. R. Kumar, L. Liu, G. Roelkens, E.-J. Geluk, T. de Vries, F. Karouta, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “10-GHz all-optical gate based on a III–V/SOI microdisk,” IEEE Photon. Technol. Lett. 22(13), 981–983 (2010). [CrossRef]
  16. L. Zhang, J.-Y. Yang, M. Song, Y. Li, B. Zhang, R. G. Beausoleil, and A. E. Willner, “Microring-based modulation and demodulation of DPSK signal,” Opt. Express 15(18), 11564–11569 (2007). [CrossRef] [PubMed]
  17. S.-W. Jeon, Y. H. Kim, B. H. Lee, M. A. Jung, and C.-S. Park, “OSNR monitoring technique based on cascaded long-period fiber grating with optically tunable phase shifter,” Opt. Express 16(25), 20603–20609 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited