OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12180–12189

Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell  »View Author Affiliations


Optics Express, Vol. 19, Issue 13, pp. 12180-12189 (2011)
http://dx.doi.org/10.1364/OE.19.012180


View Full Text Article

Enhanced HTML    Acrobat PDF (2355 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a novel splicing-based pressure-assisted melt-filling technique for creating metallic nanowires in hollow channels in microstructured silica fibers. Wires with diameters as small as 120 nm (typical aspect ration 50:1) could be realized at a filling pressure of 300 bar. As an example we investigate a conventional single-mode step-index fiber with a parallel gold nanowire (wire diameter 510 nm) running next to the core. Optical transmission spectra show dips at wavelengths where guided surface plasmon modes on the nanowire phase match to the glass core mode. By monitoring the side-scattered light at narrow breaks in the nanowire, the loss could be estimated. Values as low as 0.7 dB/mm were measured at resonance, corresponding to those of an ultra-long-range eigenmode of the glass-core/nanowire system. By thermal treatment the hollow channel could be collapsed controllably, permitting creation of a conical gold nanowire, the optical properties of which could be monitored by side-scattering. The reproducibility of the technique and the high optical quality of the wires suggest applications in fields such as nonlinear plasmonics, near-field scanning optical microscope tips, cylindrical polarizers, optical sensing and telecommunications.

© 2011 OSA

OCIS Codes
(230.4000) Optical devices : Microstructure fabrication
(240.6680) Optics at surfaces : Surface plasmons
(290.0290) Scattering : Scattering
(060.4005) Fiber optics and optical communications : Microstructured fibers
(160.4236) Materials : Nanomaterials

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 3, 2011
Revised Manuscript: May 31, 2011
Manuscript Accepted: June 1, 2011
Published: June 8, 2011

Citation
H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, "Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers," Opt. Express 19, 12180-12189 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12180


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1671–1677 (2006). [CrossRef]
  3. M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16(18), 13617–13623 (2008). [CrossRef] [PubMed]
  4. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007). [CrossRef] [PubMed]
  5. A. L. Pyayt, B. Wiley, Y. N. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008). [CrossRef] [PubMed]
  6. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005). [CrossRef] [PubMed]
  7. J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010). [CrossRef]
  8. K. L. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96(15), 157401 (2006). [CrossRef] [PubMed]
  9. Y. G. Ma, X. Y. Li, H. K. Yu, L. M. Tong, Y. Gu, and Q. H. Gong, “Direct measurement of propagation losses in silver nanowires,” Opt. Lett. 35(8), 1160–1162 (2010). [CrossRef] [PubMed]
  10. X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009). [CrossRef] [PubMed]
  11. E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102(20), 203904 (2009). [CrossRef] [PubMed]
  12. A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010). [CrossRef] [PubMed]
  13. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008). [CrossRef]
  14. M. Schmidt, L. Prill Sempere, H. Tyagi, C. Poulton, and P. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008). [CrossRef]
  15. H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010). [CrossRef] [PubMed]
  16. Z. X. Zhang, M. L. Hu, K. T. Chan, and C. Y. Wang, “Plasmonic waveguiding in a hexagonally ordered metal wire array,” Opt. Lett. 35(23), 3901–3903 (2010). [CrossRef] [PubMed]
  17. W. J. Wadsworth, A. Witkowska, S. G. Leon-Saval, and T. A. Birks, “Hole inflation and tapering of stock photonic crystal fibres,” Opt. Express 13(17), 6541–6549 (2005). [CrossRef] [PubMed]
  18. M. J. Weber, Handbook Of Optical Materials (CRC Press, 2002).
  19. N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010). [CrossRef]
  20. M. A. Schmidt, N. Granzow, N. Da, M. Y. Peng, L. Wondraczek, and P. St. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009). [CrossRef] [PubMed]
  21. H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008). [CrossRef] [PubMed]
  22. E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921). [CrossRef]
  23. N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011). [CrossRef]
  24. S. Z. Beer, Liquid Metals (Marcel Dekker, Inc, 1972).
  25. T. Iida, and R. Guthrie, The Physical Properties of Liquid Metals (Clarendon Press, 1988).
  26. A. W. Snyder, and J. Love, Optical Waveguide Theory , 1st ed. (Springer, 1983).
  27. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 127(18), 164705 (2007). [CrossRef]
  28. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984). [CrossRef] [PubMed]
  29. J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S. Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited