OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12336–12341

Modifying photoisomerization efficiency by metallic nanostructures

Shen Xu, Jiong Shan, Wei Shi, Liying Liu, and Lei Xu  »View Author Affiliations

Optics Express, Vol. 19, Issue 13, pp. 12336-12341 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (965 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Trans-to-cis photoisomerization efficiency of azobenzene dye is artificially modified from 0.09 to 0.38 when dye molecules are placed close to gold nanoparticle films with different structures. Transient fluorescence and surface enhanced Raman scattering measurement verify that the enhancement and reduction of photoisomerization efficiency come from the competition between enhanced local optical field from surface plasmon resonance and the accelerated nonradiative decay of excited dye molecules. The photoisomerization efficiency can be further modified by controlling the distance between azobenzene dye and gold films. Our finding can be applied to improve the performance of photoisomerization effect in photochemistry and photonics.

© 2011 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.3900) Materials : Metals
(240.6680) Optics at surfaces : Surface plasmons
(260.5130) Physical optics : Photochemistry

ToC Category:

Original Manuscript: April 20, 2011
Revised Manuscript: May 22, 2011
Manuscript Accepted: May 22, 2011
Published: June 9, 2011

Shen Xu, Jiong Shan, Wei Shi, Liying Liu, and Lei Xu, "Modifying photoisomerization efficiency by metallic nanostructures," Opt. Express 19, 12336-12341 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Loudwig and H. Bayley, “Photoisomerization of an individual azobenzene molecule in water: an on-off switch triggered by light at a fixed wavelength,” J. Am. Chem. Soc. 128(38), 12404–12405 (2006). [CrossRef] [PubMed]
  2. T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995). [CrossRef] [PubMed]
  3. D. C. Burns, F. Z. Zhang, and G. A. Woolley, “Synthesis of 3,3′-bis(sulfonato)-4,4′-bis(chloroacetamido)azobenzene and cysteine cross-linking for photo-control of protein conformation and activity,” Nat. Protoc. 2(2), 251–258 (2007). [CrossRef] [PubMed]
  4. X. Pan, C. S. Wang, C. Y. Wang, and X. Q. Zhang, “Image storage based on circular-polarization holography in an azobenzene side-chain liquid-crystalline polymer,” Appl. Opt. 47(1), 93–98 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=ao-47-1-93 . [CrossRef]
  5. M. J. Comstock, N. Levy, A. Kirakosian, J. Cho, F. Lauterwasser, J. H. Harvey, D. A. Strubbe, J. M. Fréchet, D. Trauner, S. G. Louie, and M. F. Crommie, “Reversible photomechanical switching of individual engineered molecules at a metallic surface,” Phys. Rev. Lett. 99(3), 038301 (2007). [CrossRef] [PubMed]
  6. G. Vogt, G. Krampert, P. Niklaus, P. Nuernberger, and G. Gerber, “Optimal control of photoisomerization,” Phys. Rev. Lett. 94(6), 068305 (2005). [CrossRef] [PubMed]
  7. G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature 241, 20–22 (1973).
  8. Y. K. Park and S. Park, “Directing close-packing of midnanosized gold nanoparticles at a water/hexane interface,” Chem. Mater. 20(6), 2388–2393 (2008). [CrossRef]
  9. H. Rau, G. Greiner, G. Gauglitz, and H. Meier, “Optimal control of photoisomerization,” J. Phys. Chem. 94(17), 6523–6524 (1990). [CrossRef]
  10. E. Fischer, “The calculation of photostationary states in systems A ⇔ B when only A is known,” J. Phys. Chem. 71(11), 3704–3706 (1967). [CrossRef]
  11. M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method,” J. Phys. Chem. B 107(31), 7607–7617 (2003). [CrossRef]
  12. H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002). [CrossRef] [PubMed]
  13. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002). [CrossRef] [PubMed]
  14. B. Dietzek, B. Brüggemann, T. Pascher, and A. Yartsev, “Mechanisms of molecular response in the optimal control of photoisomerization,” Phys. Rev. Lett. 97(25), 258301 (2006). [CrossRef]
  15. P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited