OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12365–12374

Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence

K. Takeuchi and N. Yamamoto  »View Author Affiliations

Optics Express, Vol. 19, Issue 13, pp. 12365-12374 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1421 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A cathodoluminescence technique using a 200-keV transmission electron microscope revealed the dispersion patterns of surface plasmon polaritons (SPPs) in a two- dimensional plasmonic crystal with cylindrical hole arrays. The dispersion curves of the SPP modes involving the Γ point were derived from the angle-resolved spectrum patterns. The contrast along the dispersion curves changed with the polarization direction of the emitted light due to the property of the SPP modes. The SPP modes at the Γ point were identified from the photon maps, which mimicked standing SPP waves in a real space. The beam-scan spectral images across the plasmonic crystal edge clearly demonstrated the dependence of the SPP to light conversion efficiency on the emission angle and polarization of light.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.1500) Optoelectronics : Cathodoluminescence
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: April 7, 2011
Revised Manuscript: June 2, 2011
Manuscript Accepted: June 2, 2011
Published: June 10, 2011

K. Takeuchi and N. Yamamoto, "Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence," Opt. Express 19, 12365-12374 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express 16(14), 10455–10464 (2008). [CrossRef] [PubMed]
  3. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001). [CrossRef] [PubMed]
  4. J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007). [CrossRef] [PubMed]
  5. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008). [CrossRef] [PubMed]
  6. T. T. Truong, J. Maria, J. Yao, M. E. Stewart, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Nanopost plasmonic crystals,” Nanotechnology 20(43), 434011 (2009). [CrossRef] [PubMed]
  7. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968). [CrossRef]
  8. D. Heitmann, “Radiative decay of surface plasmons excited by fast electrons on periodically modulated silver surfaces,” J. Phys. Chem. 10, 397–405 (1977).
  9. N. Yamamoto and T. Suzuki, “Conversion of surface plasmon polaritons to light by a surface step,” Appl. Phys. Lett. 93(9), 093114 (2008). [CrossRef]
  10. M. V. Bashevoy, F. Jonsson, K. F. Macdonald, Y. Chen, and N. I. Zheludev, “Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution,” Opt. Express 15(18), 11313–11320 (2007). [CrossRef] [PubMed]
  11. J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, “Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 88(22), 221111 (2006). [CrossRef]
  12. N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by high energy electron beam,” Phys. Rev. B 64(20), 205419 (2001). [CrossRef]
  13. T. Suzuki and N. Yamamoto, “Cathodoluminescent spectroscopic imaging of surface plasmon polaritons in a 1-dimensional plasmonic crystal,” Opt. Express 17(26), 23664–23671 (2009). [CrossRef]
  14. N. Yamamoto, S. Ohtani, and F. J. García de Abajo, “Gap and Mie plasmons in individual silver nanospheres near a silver surface,” Nano Lett. 11(1), 91–95 (2011). [CrossRef]
  15. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004). [CrossRef]
  16. C. J. Bradley and A. P. Cracknell, The Mathematical Theory of Symmetry in Solids (Oxford University Press, 1972).
  17. F. J. García de Abajo and M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100(10), 106804 (2008). [CrossRef] [PubMed]
  18. M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. Lezec, H. Atwater, F. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79(11), 113405 (2009). [CrossRef]
  19. G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105(25), 255501 (2010). [CrossRef]
  20. J. J. Cha, Z. Yu, E. Smith, M. Couillard, S. Fan, and D. A. Muller, “Mapping local optical densities of states in silicon photonic structures with nanoscale electron spectroscopy,” Phys. Rev. B 81(11), 113102 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited