OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12375–12383

Nanoscale heating of laser irradiated single gold nanoparticles in liquid

Mitsuhiro Honda, Yuika Saito, Nicholas I Smith, Katsumasa Fujita, and Satoshi Kawata  »View Author Affiliations

Optics Express, Vol. 19, Issue 13, pp. 12375-12383 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1316 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Biological applications where nanoparticles are used in a cell environment with laser irradiation are rapidly emerging. Investigation of the localized heating effect due to the laser irradiation on the particle is required to preclude unintended thermal effects. While bulk temperature rise can be determined using macroscale measurement methods, observation of the actual temperature within the nanoscale domain around the particle is difficult and here we propose a method to measure the local temperature around a single gold nanoparticle in liquid, using white light scattering spectroscopy. Using 40-nm-diameter gold nanoparticles coated with thermo-responsive polymer, we monitored the localized heating effect through the plasmon peak shift. The shift occurs due to the temperature-dependent refractive index change in surrounding polymer medium. The results indicate that the particle experiences a temperature rise of around 10 degrees Celsius when irradiated with tightly focused irradiation of ~1 mW at 532 nm.

© 2011 OSA

OCIS Codes
(180.0180) Microscopy : Microscopy
(290.5850) Scattering : Scattering, particles

ToC Category:
Optics at Surfaces

Original Manuscript: April 11, 2011
Revised Manuscript: May 27, 2011
Manuscript Accepted: May 27, 2011
Published: June 10, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Mitsuhiro Honda, Yuika Saito, Nicholas I Smith, Katsumasa Fujita, and Satoshi Kawata, "Nanoscale heating of laser irradiated single gold nanoparticles in liquid," Opt. Express 19, 12375-12383 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008). [CrossRef]
  2. A. Barhoumi, R. Huschka, R. Bardhan, M. W. Knight, and N. J. Halas, “Light-induced release of DNA from Plasmon-resonant nanoparticles: Towards light-controlled gene therapy,” Chem. Phys. Lett. 482(4-6), 171–179 (2009). [CrossRef]
  3. R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220(4596), 524–527 (1983). [CrossRef] [PubMed]
  4. X. D. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003). [CrossRef] [PubMed]
  5. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002). [CrossRef] [PubMed]
  6. K. Fujita, S. Ishitobi, K. Hamada, N. I. Smith, A. Taguchi, Y. Inouye, and S. Kawata, “Time-resolved observation of surface-enhanced Raman scattering from gold nanoparticles during transport through a living cell,” J. Biomed. Opt. 14(2), 024038 (2009). [CrossRef] [PubMed]
  7. X. X. Han, B. Zhao, and Y. Ozaki, “Surface-enhanced Raman scattering for protein detection,” Anal. Bioanal. Chem. 394(7), 1719–1727 (2009). [CrossRef] [PubMed]
  8. W. Haeberle, M. Pantea, and J. K. H. Hoerber, “Nanometer-scale heat-conductivity measurements on biological samples,” Ultramicroscopy 106(8-9), 678–686 (2006). [CrossRef] [PubMed]
  9. C. M. Tan, J. Jia, and W. Yu, “Temperature dependence of the field emission of multiwalled carbon nanotubes,” Appl. Phys. Lett. 86(26), 263104 (2005). [CrossRef]
  10. H. Aizawa, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, “Fluorescence thermometer based on the photoluminescence intensity ratio in Tb doped phosphor materials,” Sens. Actuators A Phys. 101(1), 78–82 (2002).
  11. J. Lee, A. O. Govorov, and N. A. Kotov, “Nanoparticle assemblies with molecular springs: a nanoscale thermometer,” Angew. Chem. 117(45), 7605–7608 (2005). [CrossRef]
  12. C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009). [CrossRef] [PubMed]
  13. H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6(4), 783–788 (2006). [CrossRef] [PubMed]
  14. J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008). [CrossRef] [PubMed]
  15. X. He, W. F. Wolkers, J. H. Crowe, D. J. Swanlund, and J. C. Bischof, “In situ thermal denaturation of proteins in dunning AT-1 prostate cancer cells: implication for hyperthermic cell injury,” Ann. Biomed. Eng. 32(10), 1384–1398 (2004). [CrossRef] [PubMed]
  16. M. Y. Sfeir, F. Wang, L. Huang, C. C. Chuang, J. Hone, S. P. O’Brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science 306(5701), 1540–1543 (2004). [CrossRef] [PubMed]
  17. S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001).
  18. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  19. B. W. Garner, T. Cai, S. Ghosh, Z. Hu, and A. Neogi, “Refractive Index change due to volume-phase transition in polyacrylamide gel nanospheres for optoelectronics and bio-photonics,” Appl. Phys. Express 2, 057001 (2009). [CrossRef]
  20. R. Contreras-Cáceres, J. Pacifico, I. Pastoriza-Santos, J. Perez-Juste, A. Fernandez-Barbero, and L. M. Liz-Marzan, “Au@pNIPAM thermosensitive nanostructures: control over shell cross-linking, overall dimensions, and core growth,” Adv. Funct. Mater. 19(19), 3070–3076 (2009). [CrossRef]
  21. R. M. J. Cotterill, Biophysics (Wiley, 2002). [PubMed]
  22. T. Okamoto and I. Yamaguchi, “Field enhancement by a metallic sphere on dielectric substrates,” Opt. Rev. 6(3), 211–214 (1999). [CrossRef]
  23. P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. Appl. Phys. 100(5), 054305 (2006). [CrossRef]
  24. J. Hofkens, J. Hotta, K. Sasaki, H. Masuhara, and K. Iwai, “Molecular assembling by the radiation pressure of a focused laser beam: poly(N-isopropylacrylamide) in aqueous solution,” Langmuir 13(3), 414–419 (1997). [CrossRef]
  25. S. Iwanaga, N. I. Smith, K. Fujita, and S. Kawata, “Slow Ca(2+) wave stimulation using low repetition rate femtosecond pulsed irradiation,” Opt. Express 14(2), 717–725 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited