OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12408–12417

Second harmonic generation in AlGaAs photonic wires using low power continuous wave light

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arès, V. Aimez, and R. Morandotti  »View Author Affiliations

Optics Express, Vol. 19, Issue 13, pp. 12408-12417 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1179 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report modal phase matched (MPM) second harmonic generation (SHG) in high-index contrast AlGaAs sub-micron ridge waveguides, by way of sub-mW continuous wave powers at telecommunication wavelengths. We achieve an experimental normalized conversion efficiency of ~14%/W/cm2, obtained through a careful sub-wavelength design supporting both the phase matching requirement and a significant overlap efficiency. Furthermore, the weak anomalous dispersion, robust fabrication technology and possible geometrical and thermal tuning of the device functionality enable a fully integrated multi-functional chip for several critical areas in telecommunications, including wavelength (time) division multiplexing and quantum entanglement.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.6000) Materials : Semiconductor materials
(190.2620) Nonlinear optics : Harmonic generation and mixing
(230.7370) Optical devices : Waveguides
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Nonlinear Optics

Original Manuscript: May 3, 2011
Revised Manuscript: June 4, 2011
Manuscript Accepted: June 7, 2011
Published: June 10, 2011

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arès, V. Aimez, and R. Morandotti, "Second harmonic generation in AlGaAs photonic wires using low power continuous wave light," Opt. Express 19, 12408-12417 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. M. Fejer, “Nonlinear optical frequency conversion,” Phys. Today 47(5), 25–32 (1994). [CrossRef]
  2. A. Arie, K. Fradkin-Kashi, and Y. Shreberk, “Frequency conversion in novel materials and its application to high resolution gas sensing,” Opt. Lasers Eng. 37(2-3), 159–170 (2002). [CrossRef]
  3. W. Petrich, “Mid-infrared and Raman spectroscopy for medical diagnostics,” Appl. Spectrosc. Rev. 36(2&3), 181–237 (2001). [CrossRef]
  4. R. F. Curl and F. K. Tittel, “Tunable infrared laser spectroscopy,” Annu. Rep. Prog. Chem. C 98, 217–270 (2002). [CrossRef]
  5. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001). [CrossRef]
  6. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006). [CrossRef]
  7. A. M. Zheltikov, “Limiting efficiencies of second-harmonic generation and cascaded χ(2) processes in quadratically nonlinear photonic nanowires,” Opt. Commun. 270(2), 402–406 (2007). [CrossRef]
  8. R. W. Boyd, Nonlinear Optics Third Edition, (Academic Press, New York 2008).
  9. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391(6666), 463–466 (1998). [CrossRef]
  10. T. C. Kowalczyk, K. D. Singer, and P. A. Cahill, “Anomalous-dispersion phase-matched second-harmonic generation in a polymer waveguide,” Opt. Lett. 20(22), 2273–2275 (1995). [CrossRef] [PubMed]
  11. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27(3), 179–181 (2002). [CrossRef]
  12. W. Sohler and H. Suche, “Second-harmonic generation in Ti-diffused LiNbO3 optical waveguides with 25% conversion efficiency,” Appl. Phys. Lett. 33(6), 518–520 (1978). [CrossRef]
  13. D. B. Anderson and J. T. Boyd, “Wideband CO2 laser second harmonic generation phase matched in GaAs thin-film waveguides,” Appl. Phys. Lett. 19(8), 266–268 (1971). [CrossRef]
  14. S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett. 84(16), 2974–2976 (2004). [CrossRef]
  15. S. V. Rao, K. Moutzouris, and M. Ebrahimzadeh, “Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques,” J. Opt. A, Pure Appl. Opt. 6(6), 569–584 (2004). [CrossRef]
  16. Y. Ishigame, T. Suhara, and H. Nishihara, “LiNbO(3) waveguide second-harmonic-generation device phase matched with a fan-out domain-inverted grating,” Opt. Lett. 16(6), 375–377 (1991). [CrossRef] [PubMed]
  17. X. Yu, L. Scaccabarozzi, and J. S. Harris JrP. S. Kuo and M. M. Fejer, “Efficient continuous wave second harmonic generation pumped at 1.55 μm in quasi-phasematched AlGaAs waveguides,” Opt. Express 13, 10742–10748 (2005). [CrossRef] [PubMed]
  18. A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ = 1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72(23), 2942–2944 (1998). [CrossRef]
  19. L. Scaccabarozzi, M. M. Fejer, Y. Huo, S. Fan, X. Yu, and J. S. Harris, “Enhanced second-harmonic generation in AlGaAs/AlxOy tightly confining waveguides and resonant cavities,” Opt. Lett. 31(24), 3626–3628 (2006). [CrossRef] [PubMed]
  20. A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjdani, and J. Nagle, “Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 68(10), 1320–1322 (1996). [CrossRef]
  21. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992). [CrossRef]
  22. P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1-xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21(19), 1462–1464 (2009). [CrossRef]
  23. Z. Yang, P. Chak, A. D. Bristow, H. M. van Driel, R. Iyer, J. S. Aitchison, A. L. Smirl, and J. E. Sipe, “Enhanced second-harmonic generation in AlGaAs microring resonators,” Opt. Lett. 32(7), 826–828 (2007). [CrossRef] [PubMed]
  24. P. Dong, J. Upham, A. Jugessur, and A. G. Kirk, “Observation of continuous-wave second-harmonic generation in semiconductor waveguide directional couplers,” Opt. Express 14(6), 2256–2262 (2006). [CrossRef] [PubMed]
  25. G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, “Enhanced third-order nonlinear effects in optical AlGaAs nanowires,” Opt. Express 14(20), 9377–9384 (2006). [CrossRef] [PubMed]
  26. D. Duchesne, R. Morandotti, G. Siviloglou, R. El-Ganainy, G. Stegeman, D. Christodoulides, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, and M. Sorel, “Nonlinear photonics in AlGaAs photonics nanowires: self phase and cross phase modulation,” in International Symposium on Signals, Systems and Electronics, 475–478 (2007).
  27. J. Meier, W. S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, and J. S. Aitchison, “Group velocity inversion in AlGaAs nanowires,” Opt. Express 15(20), 12755–12762 (2007). [CrossRef] [PubMed]
  28. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grove, J. Goldhar, and P. T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14(1), 74–76 (2002). [CrossRef]
  29. M. Bhashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, “Determination of quadratic nonlinear optical coefficient of AlxGa1-xAs system by the method of reflected second harmonics,” J. Appl. Phys. 74(1), 596–601 (1993). [CrossRef]
  30. M. Volatier, D. Duchesne, R. Morandotti, R. Arès, and V. Aimez, “Extremely high aspect ratio GaAs and GaAs/AlGaAs nanowaveguides fabricated using chlorine ICP etching with N2-promoted passivation,” Nanotechnology 21(13), 134014 (2010). [CrossRef] [PubMed]
  31. H. Ishikawa and T. Kondo, “Birefringent phase matching in thin rectangular high-index-contrast waveguides,” Appl. Phys. Express 2, 042202 (2009). [CrossRef]
  32. S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding,” Appl. Phys. Lett. 66(25), 3410–3412 (1995). [CrossRef]
  33. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigga, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000). [CrossRef]
  34. S. Zollner, “Optical constants and critical-point parameters of GaAs from 0.73 to 6.60 eV,” J. Appl. Phys. 90(1), 515–517 (2001). [CrossRef]
  35. D. Duchesne, R. Morandotti, P. Cheben, B. Lamontagne, D.-X. Xu, S. Janz, and D. Christodoulides, “Group-index birefringence and loss measurements in silicon-on-insulator photonic wire waveguides,” Opt. Eng. 46(10), 104602 (2007). [CrossRef]
  36. A. Jaouad and V. Aimez, “Passivation of air-exposed AlGaAs using low frequency plasma-enhanced chemical vapor deposition of silicon nitride,” Appl. Phys. Lett. 89(9), 092125 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited