OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12440–12455

Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion

Ksenia Dolgaleva, Wing Chau Ng, Li Qian, and J. Stewart Aitchison  »View Author Affiliations


Optics Express, Vol. 19, Issue 13, pp. 12440-12455 (2011)
http://dx.doi.org/10.1364/OE.19.012440


View Full Text Article

Enhanced HTML    Acrobat PDF (1496 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the efficient nonlinear optical interactions in AlGaAs strip-loaded waveguides with a wafer composition specifically designed to increase the nonlinear coefficient. We demonstrate a broad-band self-phase modulation with a nonlinear phase shift up to 6π, and four-wave mixing with a 20-nm tuning range and signal-to-idler conversion efficiency up to 10 dB. Our samples are several times shorter than similar devices used for wavelength conversion by XPM and FWM in previous reports, but the efficiency of the observed effects is similar. Our experimental studies demonstrate the high potential of AlGaAs for all-optical networks.

© 2011 OSA

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.7370) Optical devices : Waveguides
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Integrated Optics

History
Original Manuscript: February 18, 2011
Revised Manuscript: June 1, 2011
Manuscript Accepted: June 1, 2011
Published: June 13, 2011

Citation
Ksenia Dolgaleva, Wing Chau Ng, Li Qian, and J. Stewart Aitchison, "Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion," Opt. Express 19, 12440-12455 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12440


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004). [CrossRef] [PubMed]
  2. S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, “Ultrafast all-optical modulation on a silicon chip,” Opt. Lett. 30, 2891–2893 (2005). [CrossRef] [PubMed]
  3. B. G. Lee, B. A. Small, K. Bergman, Q. Xu, and M. Lipson, “Transmission of high-data-rate optical signals through a micrometer-scale silicon ring resonator,” Opt. Lett. 31, 2701–2703 (2006). [CrossRef] [PubMed]
  4. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007). [CrossRef]
  5. B. J. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21, 182–184 (2009). [CrossRef]
  6. W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16, 16735–16745 (2008). [CrossRef] [PubMed]
  7. F. Li, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, and D. J. Moss, “Error-free all-optical demultiplexing at 160 Gb/s via FWM in a silicon nanowire,” Opt. Express 18, 3905–3910 (2010). [CrossRef] [PubMed]
  8. V. G. Ta’eed, M. Shokoon-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30, 2900–2902 (2005). [CrossRef] [PubMed]
  9. M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 W−1m−1 As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008). [CrossRef] [PubMed]
  10. V. G. Ta’eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides,” Opt. Express 14, 11242–11247 (2006). [CrossRef] [PubMed]
  11. M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19, 1496–1498 (2007). [CrossRef]
  12. M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenlowe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17, 2182–2187 (2009). [CrossRef] [PubMed]
  13. F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17, 3514–3520 (2009). [CrossRef] [PubMed]
  14. V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, and Y. Ruan, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 360–370 (2006). [CrossRef]
  15. G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994). [CrossRef]
  16. A. Villeneuve, J. S. Aitchison, B. Vogele, R. Tapella, J. U. Kang, C. Trevino, and G. I. Stegeman, “Waveguide design for minimum nonlinear effective area and switching energy in AlGaAs at half the bandgap,” Electron. Lett. 31, 549–551 (1995). [CrossRef]
  17. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997). [CrossRef]
  18. D. Duchesne, R. Morandotti, G. A. Siviloglou, R. El-Ganainy, G. I. Stegeman, D. N. Christodoulides, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, and M. Sorel, “Nonlinear photonics in AlGaAs photonics nanowires: self phase and cross phase modulation,” International Symposium: Signals, Systems and Electronics , 2007, 475–478. [CrossRef]
  19. G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, “Enhanced third-order nonlinear effects in optical AlGaAs nanowires,” Opt. Express 14, 9377–9384 (2006). [CrossRef] [PubMed]
  20. W. Astar, P. Apiratikul, T. E. Murphy, and G. M. Carter, “Wavelength conversion of 10-Gb/s RZ-OOK using filtered XPM in a passive GaAs-AlGaAs waveguide,” IEEE Photon. Technol. Lett. 22, 637–639 (2010). [CrossRef]
  21. A. Pasquazi, Y. Park, J. Azana, F. Legare, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide,” Opt. Express 18, 7634–7641 (2010). [CrossRef] [PubMed]
  22. K. Dolgaleva, W. C. Ng, L. Qian, J. Aitchison, M. Camasta, and M. Sorel, “Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9-mm-long AlGaAs waveguides,” Opt. Lett. 35, 4093–4095 (2010). [CrossRef] [PubMed]
  23. M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374–20381 (2008). [CrossRef] [PubMed]
  24. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1–xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000). [CrossRef]
  25. R. J. Deri and E. Kapon, “Low-loss III–V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991). [CrossRef]
  26. G. P. Agrawal, Nonlinear Fiber Optics , 3rd ed. (Academic Press, 2001).
  27. N. Vermeulen, C. Debaes, and H. Thienpont, “Modeling mid-infrared continuous-wave silicon-based Raman lasers,” Proc. SPIE 6455, 64550U (2007). [CrossRef]
  28. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited