OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12462–12468

Planar waveguide tilted Bragg grating refractometer fabricated through physical micromachining and direct UV writing

Christopher Holmes, Lewis G. Carpenter, Helen L. Rogers, Ian J. G. Sparrow, James C. Gates, and Peter G. R. Smith  »View Author Affiliations

Optics Express, Vol. 19, Issue 13, pp. 12462-12468 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1014 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A set of rapid prototyping techniques are combined to construct a laterally-tilted Bragg grating refractometer in a novel planar geometry. The tilted Bragg grating is fabricated in a silica-on-silicon planar substrate using a dual beam direct UV writing (DUW) technique. Lateral cladding mode confinement is subsequently achieved by physically micromachining two trenches either side of the direct UV written waveguide. The resulting device is demonstrated as an effective refractometer, displaying a comparable sensitivity to tilted Bragg gratings in a fiber optical geometry, but with the added advantages of planar integration.

© 2011 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.6010) Integrated optics : Sensors
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Integrated Optics

Original Manuscript: April 14, 2011
Revised Manuscript: May 12, 2011
Manuscript Accepted: May 12, 2011
Published: June 13, 2011

Christopher Holmes, Lewis G. Carpenter, Helen L. Rogers, Ian J. G. Sparrow, James C. Gates, and Peter G. R. Smith, "Planar waveguide tilted Bragg grating refractometer fabricated through physical micromachining and direct UV writing," Opt. Express 19, 12462-12468 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Baldini, A. N. Chester, J. Homola, and S. Martellucci, Optical Chemical Sensors (Springer, 2004).
  2. C. McDonagh, C. S. Burke, and B. D. MacCraith, “Optical chemical sensors,” ChemInform 39(18), 18 (2008).
  3. G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent-wave sensors,” Proc. SPIE 2836, 342–350 (1996). [CrossRef]
  4. S. Watts, “Bragg gratings: optical microchip sensors,” Nat. Photonics 4(7), 433–434 (2010). [CrossRef]
  5. D. Bhatta, E. Stadden, E. Hashem, I. J. G. Sparrow, and G. D. Emmerson, “Multi-purpose optical biosensors for real-time detection of bacteria, viruses and toxins,” Sens. Actuators B Chem. 149(1), 233–238 (2010). [CrossRef]
  6. P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Microchannel-based refractive index sensors monolithically integrated with silica waveguides: structures and sensitivities,” IEEE Sens. J. 8(5), 457–464 (2008). [CrossRef]
  7. T. Guo, H.-Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express 17(7), 5736–5742 (2009). [CrossRef] [PubMed]
  8. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007). [CrossRef] [PubMed]
  9. E. Chehura, S. W. James, and R. P. Tatam, “Temperature and strain discrimination using a single tilted fibre Bragg grating,” Opt. Commun. 275(2), 344–347 (2007). [CrossRef]
  10. G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001). [CrossRef]
  11. X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fibre,” IEEE Photon. Technol. Lett. 17(4), 864–866 (2005). [CrossRef]
  12. C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007). [CrossRef] [PubMed]
  13. T. Guo, C. Chen, and J. Albert, “Non-uniform-tilt-modulated fibre Bragg grating for temperature-immune micro-displacement measurement,” Meas. Sci. Technol. 20(3), 034007 (2009). [CrossRef]
  14. L.-Y. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensor,” Opt. Express 8(11), 11465–11471 (2010).
  15. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010). [CrossRef] [PubMed]
  16. X. Dai, S. J. Mihailov, R. B. Walker, C. Blanchetiere, C. Calender, H. Ding, P. Lu, D. Grobnic, C. W. Smelser, and G. Cuglietta, “Ridge waveguide optical sensor incorporating a Bragg grating,” U.S. patent 7,567,734 B2 (28 July 2009).
  17. . K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998). [CrossRef]
  18. C. Riziotis and M. N. Zervas, “Design considerations in optical add/drop multiplexers based on grating-assisted null couplers,” J. Lightwave Technol. 19(1), 92–104 (2001). [CrossRef]
  19. D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88(1), 83–88 (2007). [CrossRef]
  20. E. B. Brousseau, S. S. Dimov, and D. T. Pham, “Some recent advances in multi-material micro- and nano-manufacturing,” Int. J. Adv. Manuf. Technol. 47(1-4), 161–180 (2010). [CrossRef]
  21. Y.-C. Lu, R. Geng, C. Wang, F. Zhang, C. Liu, T. Ning, and S. Jian, “Polarization effects in tilted fiber Bragg grating refractometers,” J. Lightwave Technol. 28(11), 1677–1684 (2010). [CrossRef]
  22. G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002). [CrossRef]
  23. F. R. M. Adikan, C. B. E. Gawith, P. G. R. Smith, I. J. G. Sparrow, G. D. Emmerson, C. Riziotis, and H. Ahmad, “Design and demonstration of direct UV-written small angle X couplers in silica-on-silicon for broadband operation,” Appl. Opt. 45(24), 6113–6118 (2006). [PubMed]
  24. M. Olivero and M. Svalgaard, “UV-written integrated optical 1xN splitters,” Opt. Express 14(1), 162–170 (2006). [CrossRef] [PubMed]
  25. D. O. Kundys, J. C. Gates, S. Dasgupta, C. Gawith, and P. Smith, “Use of cross-couplers to decrease size of UV written photonic circuits,” IEEE Photon. Technol. Lett. 21(13), 947–949 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited