OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12480–12489

Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation

Charlton J. Chen, Jiangjun Zheng, Tingyi Gu, James F. McMillan, Mingbin Yu, Guo-Qiang Lo, Dim-Lee Kwong, and Chee Wei Wong  »View Author Affiliations


Optics Express, Vol. 19, Issue 13, pp. 12480-12489 (2011)
http://dx.doi.org/10.1364/OE.19.012480


View Full Text Article

Enhanced HTML    Acrobat PDF (2358 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We examine the cavity resonance tuning of high-Q silicon photonic crystal heterostructures by localized laser-assisted thermal oxidation using a 532 nm continuous wave laser focused to a 2.5 μm radius spot-size. The total shift is consistent with the parabolic rate law. A tuning range of up to 8.7 nm is achieved with ∼ 30 mW laser powers. Over this tuning range, the cavity Qs decreases from 3.2×105 to 1.2×105. Numerical simulations model the temperature distributions in the silicon photonic crystal membrane and the cavity resonance shift from oxidation.

© 2011 OSA

OCIS Codes
(250.5300) Optoelectronics : Photonic integrated circuits
(220.4241) Optical design and fabrication : Nanostructure fabrication
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: April 22, 2011
Revised Manuscript: May 26, 2011
Manuscript Accepted: May 26, 2011
Published: June 13, 2011

Citation
Charlton J. Chen, Jiangjun Zheng, Tingyi Gu, James F. McMillan, Mingbin Yu, Guo-Qiang Lo, Dim-Lee Kwong, and Chee Wei Wong, "Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation," Opt. Express 19, 12480-12489 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12480


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005). [CrossRef]
  2. X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009). [CrossRef] [PubMed]
  3. J. Gao, J. F. McMillan, M.-C. Wu, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96, 051123 (2010). [CrossRef]
  4. X. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett. 91(16), 161114 (2007). [CrossRef]
  5. B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength tuning of a nanocavity by subnanometer control of a two-dimensional silicon-based photonic crystal slab structure,” Appl. Opt. 48(26), 4899–4903 (2009). [CrossRef] [PubMed]
  6. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atat‘̀ure, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005). [CrossRef]
  7. H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009). [CrossRef]
  8. M.-K. Seo, H.-G. Park, J.-K. Yang, J.-Y. Kim, S.-H. Kim, and Y.-H. Lee, “Controlled sub-nanometer tuning of photonic crystal resonator by carbonaceous nano-dots,” Opt. Express 16(13), 9829–9837 (2008). [CrossRef] [PubMed]
  9. A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vuckovic, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008). [CrossRef]
  10. M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Magi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D.-Y. Choi, D. A. P. Bulla, and B. Luther-Davies, “Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 34, 3671–3673 (2009). [CrossRef] [PubMed]
  11. K. Hennessy, C. H‘̀ogerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89(4), 041118 (2006). [CrossRef]
  12. C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004). [CrossRef]
  13. J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92(10), 103114 (2008). [CrossRef]
  14. F. Micheli and I. W. Boyd, “Photon-controlled oxidation of silicon,” Appl. Phys. Lett. 51(15), 1149–1151 (1987). [CrossRef]
  15. M. Huber, R. A. Deutschmann, R. Neumann, K. Brunner, and G. Abstreiter, “Local laser induced rapid thermal oxidation of SOI substrates,” Appl. Surface Sci. , 168(1–4), 204–207 (2000). [CrossRef]
  16. R. A. Deutschmann, M. Huber, R. Neumann, K. Brunner, and G. Abstreiter, “Direct sub-μm lateral patterning of SOI by focused laser beam induced oxidation,” Microelectronic Eng. , 48(1–4), 367–370 (1999). [CrossRef]
  17. Y. S. Ju and K. E. Goodson, “Phonon scattering in silicon films with thickness of order 100 nm,” Appl. Phys. Lett. 74(20), 3005–3007 (1999). [CrossRef]
  18. C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010). [CrossRef]
  19. M. W. Lee, C. Grillet, C. L. C. Smith, D. J. Moss, B. J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, and Y.-H. Lee, “Photosensitive post tuning of chalcogenide photonic crystal waveguides,” Opt. Express 15(3), 1277–1285 (2007). [CrossRef] [PubMed]
  20. Y. A. Vlasov and S. J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31(1), 50–52 (2006). [CrossRef] [PubMed]
  21. R. Chatterjee, N. C. Panoiu, K. Liu, Z. Dios, M. B. Yu, M. T. Doan, L. J. Kaufman, R. M. Osgood, and C. W. Wong, “Achieving subdiffraction imaging through bound surface states in negative refraction photonic crystals in the near-infrared range,” Phys. Rev. Lett. 100, 187401 (2008). [CrossRef] [PubMed]
  22. B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys. 36(12), 3770–3778 (1965). [CrossRef]
  23. H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400 K,” Phys. Rev. 130, 1743–1748 (1963). [CrossRef]
  24. M. Asheghi, M. N. Touzelbaev, K. E. Goodson, Y. K. Leung, and S. S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Transfer 120(1), 30–36 (1998). [CrossRef]
  25. R. K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (Wiley, 1979).
  26. J. D. Le Grange, J. L . Markham, and C. R. Kurkjian, “Effects of surface hydration on the deposition of silane monolayers on silica,” Langmuir 9, 1749–1753 (1993). [CrossRef]
  27. N. D. Rooij, R. Sieverdink, and R. Tromp, “An investigation of the hydration properties of chemically vapour deposited silicon dioxide films by means of ellipsometry,” Thin Solid Films 47(3), 211–218 (1977). [CrossRef]
  28. G. Aygun, E. Atanassova, R. Turan, and T. Babeva, “Reflectance spectra and refractive index of a Nd:YAG laser-oxidized Si surface,” Mater. Chem. Phys. 89(2–3), 316–320 (2005). [CrossRef]
  29. H. Z. Massoud, J. D. Plummer, and E. A. Irene, “Thermal oxidation of silicon in dry oxygen: growth-rate enhancement in the thin regime,” J. Electrochem. Soc. 132(11), 2693–2700 (1985). [CrossRef]
  30. Y. Enta, B. S. Mun, M. Rossi, J. Philip, N. Ross, Z. Hussain, C. S. Fadley, K.-S. Lee, and S.-K. Kim, “Real-time observation of the dry oxidation of the Si(100) surface with ambient pressure x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(1), 012110 (2008). [CrossRef]
  31. E. Liarokapis and Y. S. Raptis, “Temperature rise induced by a cw laser beam revisited,” J. Appl. Phys. 57, 5123 (1985). [CrossRef]
  32. G. E. Jellison and F. A. Modine, “Optical absorption of silicon between 1.6 and 4.7 eV at elevated temperatures,” Appl. Phys. Lett. 41, 180 (1982). [CrossRef]
  33. M. S. Aubain and P. R. Bandaru, “In-plane thermal conductivity determination in silicon on insulator (SOI) structures through thermoreflectance measurements,” in Materials Research Society Symposium Proceedings, (MRS Spring Meeting, San Francisco, CA2010), p. 1267-DD12-01. [CrossRef]
  34. D. Song and G. Chen, “Thermal conductivity of periodic microporous silicon films,” Appl. Phys. Lett. 84, 687 (2004). [CrossRef]
  35. P. E. Hopkins, P. T. Rakich, R. H. Olsson, I. F. El-Kady, and L. M. Phinney, “Origin of reduction in phonon thermal conductivity of microporous solids,” Appl. Phys. Lett. 95, 161902 (2009). [CrossRef]
  36. P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phiney, and I. El-Kady, “Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning,” Nano Lett. 11, 107 (2011). [CrossRef]
  37. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687 (2010). [CrossRef]
  38. H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuations in air hole radii and positions on optical characteristics in photonic heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited