OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12490–12495

Second harmonic generation of swift carbon ion irradiated Nd:GdCOB waveguides

Yingying Ren, Yuechen Jia, Feng Chen, Qingming Lu, Sh. Akhmadaliev, and Shengqiang Zhou  »View Author Affiliations

Optics Express, Vol. 19, Issue 13, pp. 12490-12495 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1050 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the second harmonic generation at ~532 nm of optical waveguides in Nd:GdCOB produced by swift carbon ion irradiation. The fabricated waveguide shows good guiding property. Under pump of ~1064-nm fundamental light, the optical conversion efficiency of the frequency doubling is 0.48% W−1 and 6.8% W−1 for continuous wave and pulsed laser beams, respectively.

© 2011 OSA

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.7390) Optical devices : Waveguides, planar
(140.3515) Lasers and laser optics : Lasers, frequency doubled

ToC Category:
Integrated Optics

Original Manuscript: April 29, 2011
Revised Manuscript: June 7, 2011
Manuscript Accepted: June 7, 2011
Published: June 13, 2011

Yingying Ren, Yuechen Jia, Feng Chen, Qingming Lu, Sh. Akhmadaliev, and Shengqiang Zhou, "Second harmonic generation of swift carbon ion irradiated Nd:GdCOB waveguides," Opt. Express 19, 12490-12495 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14(9), 2238–2247 (1997). [CrossRef]
  2. F. Augé, F. Mougel, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, in Advanced Solid State Lasers, Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), p. 210.
  3. G. Aka, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, and J. Godard, “A new nonlinear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB),” Eur. J. Solid State Inorg. Chem. 33, 727–736 (1996).
  4. F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8(3), 161–173 (1997). [CrossRef]
  5. C. Q. Wang, Y. T. Chow, W. A. Gambling, S. J. Zhang, Z. X. Cheng, Z. S. Shao, and H. C. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174(5-6), 471–474 (2000). [CrossRef]
  6. D. Vivien, F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, and P. Aschehoug, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16(1-2), 213–220 (2001). [CrossRef]
  7. J. Wang, H. Zhang, Z. Wang, H. Yu, N. Zong, C. Ma, Z. Xu, and M. Jiang, “Watt-level self-frequency-doubling Nd:GdCOB lasers,” Opt. Express 18(11), 11058–11062 (2010). [CrossRef] [PubMed]
  8. E. J. Murphy, Integrated optical circuits and components: Design and applications (Marcel Dekker, New York, 1999).
  9. J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007). [CrossRef]
  10. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998). [CrossRef]
  11. G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58(12), R57–R77 (1985). [CrossRef]
  12. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, Cambridge, UK 1994).
  13. F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007). [CrossRef]
  14. F. Chen, “Construction of Two-Dimensional Waveguides in Insulating Optical Materials by Means of Ion Beam Implantation for Photonic Applications: Fabrication Methods and Research Progress,” Crit. Rev. Solid State Mater. Sci. 33(3), 165–182 (2008). [CrossRef]
  15. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009). [CrossRef]
  16. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002). [CrossRef]
  17. E. Flores-Romero, G. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Planar waveguide lasers by proton implantation in Nd:YAG crystals,” Opt. Express 12(10), 2264–2269 (2004). [CrossRef] [PubMed]
  18. Y. Tan, F. Chen, D. Jaque, W. L. Gao, H. J. Zhang, J. G. Solé, and H. J. Ma, “Ion-implanted optical-stripe waveguides in neodymium-doped calcium barium niobate crystals,” Opt. Lett. 34(9), 1438–1440 (2009). [CrossRef] [PubMed]
  19. P. Kumar, S. M. Babu, S. Ganesamoorthy, A. K. Karnal, and D. Kanjilal, “Influence of swift ions and proton implantation on the formation of optical waveguides in lithium niobate,” J. Appl. Phys. 102(8), 084905 (2007). [CrossRef]
  20. F. Qiu and T. Narusawa, “Application of swift and heavy ion implantation to the formation of chalcogenide glass optical waveguides,” Opt. Mater. 33(3), 527–530 (2011). [CrossRef]
  21. A. García-Navarroa, J. Olivaresb, G. Garcíaa, F. Agulló-Lópeza, S. García-Blancoc, C. Merchantc, and J. Stewart Aitchisonc, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1-2), 177–180 (2006). [CrossRef]
  22. J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007). [CrossRef] [PubMed]
  23. Y. Ren, N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35(19), 3276–3278 (2010). [CrossRef] [PubMed]
  24. Y. Ren, N. Dong, F. Chen, and D. Jaque, “Swift nitrogen ion irradiated waveguide lasers in Nd:YAG crystal,” Opt. Express 19(6), 5522–5527 (2011). [CrossRef] [PubMed]
  25. J. Manzano, J. Olivares, F. Agullo-Lopez, M. L. Crespillo, A. Morono, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2),” Nucl. Instrum. Methods Phys. Res. B 268(19), 3147–3150 (2010). [CrossRef]
  26. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005). [CrossRef]
  27. A. Majkic, M. Koechlin, G. Poberaj, and P. Günter, “Optical microring resonators in fluorineimplanted lithium niobate,” Opt. Express 16(12), 8769–8779 (2008). [CrossRef] [PubMed]
  28. A. Boudrioua, J. C. Loulergue, P. Moretti, B. Jacquier, G. Aka, and D. Vivien, “Second-harmonic generation in He+-implanted gadolinium calcium oxoborate planar waveguides,” Opt. Lett. 24(18), 1299–1301 (1999). [CrossRef]
  29. B. Vincent, A. Boudrioua, J. C. Loulergue, P. Moretti, S. Tascu, B. Jacquier, G. Aka, and D. Vivien, “Channel waveguides in Ca4GdO(BO3)3 fabricated by He+ implantation for blue-light generation,” Opt. Lett. 28(12), 1025–1027 (2003). [CrossRef] [PubMed]
  30. N. Dong, F. Chen, D. Jaque, A. Benayas, F. Qiu, and T. Narusawa, “Characterization of active waveguides fabricated by ultralow fuence swift heavy ion irradiation in lithium crystal,” J. Phys. D 44(10), 105103 (2011). [CrossRef]
  31. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–142 (1986). [CrossRef]
  32. J. F. Ziegler, computer code, SRIM http://www.srim.org .
  33. D. Fluck and P. Günter, “Second-Harmonic Generation in Potassium Niobate Waveguides,” IEEE J. Sel. Top. Quantum Electron. 6(1), 122–131 (2000). [CrossRef]
  34. D. N. Nikogosyan, Nonlinear optical crystals: a complete survey (Springer, New York, 2005).
  35. R. Ramponi, R. Osellame, and M. Marangoni, “Two Straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1120 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited