OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12496–12502

Nanoscale interlayer that raises response rate in photorefractive liquid crystal polymer composites

Hua Zhao, Chao Lian, Xiudong Sun, and Jingwen W. Zhang  »View Author Affiliations

Optics Express, Vol. 19, Issue 13, pp. 12496-12502 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (989 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By depositing a nanoscale photoconductive layer on a stable photorefractive (PR) polymeric film, consisting of the polymer poly[N-vinylcarbazole] (PVK) doped with 4,4’-n-pentylcyanobiphenyl (5CB) and C60, both the response rate and beam coupling properties were improved greatly. Systematic measurements and observations unveiled the role played by the additive layer in preventing ion injection from the ITO layer into the PR film and hence in mitigating the charge compensation. A strong fanning effect and high diffraction orders at small angles have demonstrated the excellent PR property in the modified samples used. To demonstrate great potential of the PR composite in the updatable applications, real time double exposure interferometry was performed accordingly with good results.

© 2011 OSA

OCIS Codes
(090.2870) Holography : Holographic display
(190.5330) Nonlinear optics : Photorefractive optics
(090.5694) Holography : Real-time holography

ToC Category:

Original Manuscript: April 29, 2011
Revised Manuscript: May 25, 2011
Manuscript Accepted: June 2, 2011
Published: June 13, 2011

Hua Zhao, Chao Lian, Xiudong Sun, and Jingwen W. Zhang, "Nanoscale interlayer that raises response rate in photorefractive liquid crystal polymer composites," Opt. Express 19, 12496-12502 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104(7), 3267–3314 (2004). [CrossRef] [PubMed]
  2. W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27(1), 585–623 (1997). [CrossRef]
  3. W. E. Moerner and S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94(1), 127–155 (1994). [CrossRef]
  4. S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66(14), 1846–1849 (1991). [CrossRef] [PubMed]
  5. K. Meerholz, B. L. Volodin, B. Sandalphon, Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994). [CrossRef]
  6. S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008). [CrossRef] [PubMed]
  7. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010). [CrossRef] [PubMed]
  8. M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006). [CrossRef]
  9. M. Eralp, J. Thomas, G. Li, S. Tay, A. Schülzgen, R. A. Norwood, N. Peyghambarian, and M. Yamamoto, “Photorefractive polymer device with video-rate response time operating at low voltages,” Opt. Lett. 31(10), 1408–1410 (2006). [CrossRef] [PubMed]
  10. C. Poga, D. M. Burland, T. Hanemann, Y. Jia, C. R. Moylan, J. J. Stankus, R. J. Twieg, and W. E. Moerner, “Photorefractivity in new organic polymeric materials,” Proc. SPIE 2526, 82–93 (1995). [CrossRef]
  11. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11(2), 320–330 (1994). [CrossRef]
  12. J. Zhang and K. D. Singer, “Homogeneous photorefractive polymer/nematogen composite,” Appl. Phys. Lett. 72(23), 2948–2950 (1998). [CrossRef]
  13. I. C. Khoo, H. Li, and Y. Liang, “Observation of orientational photorefractive effects in nematic liquid crystals,” Opt. Lett. 19(21), 1723–1725 (1994). [CrossRef] [PubMed]
  14. G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270(5243), 1794–1797 (1995). [CrossRef]
  15. I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009). [CrossRef]
  16. S. Bartkiewicz, A. Miniewicz, B. Sahraoui, and F. Kajzar, “Dynamic charge-carrier-mobility-mediated holography in thin layers of photoconducting polymers,” Appl. Phys. Lett. 81(20), 3705–3707 (2002). [CrossRef]
  17. L. Sznitko, A. Anczykowska, J. Mysliwiec, and S. Bartjiewicz, “Influence of grating period on kinetic of self-diffraction in nematic liquid crystal panel with photoconducting polymeric layer,” Appl. Phys. Lett. 96(11), 111106 (2010). [CrossRef]
  18. J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Yu. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals,” Opt. Lett. 25(6), 414–416 (2000). [CrossRef]
  19. X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett. 90(20), 201115 (2007). [CrossRef]
  20. X. Sun, F. Yao, Y. Pei, and J. Zhang, “Light controlled diffraction gratings in C60-doped nematic liquid crystals,” J. Appl. Phys. 102(1), 013104 (2007). [CrossRef]
  21. J. Zhang and K. D. Singer, “Novel photorefractive liquid crystal polymer composites,” SPIE 3471, 14 (1998).
  22. I. Shiyanovskaya, K. D. Singer, V. Percec, T. K. Bera, Y. Miura, and M. Glodde, “Charge transport in hexagonal columnar liquid crystals self-organized from supramolecular cylinders based on acene-functionalized dendrons,” Phys. Rev. B 67(3), 035204 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited