OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12524–12531

Surface plasmon polariton amplification in metal-semiconductor structures

Dmitry Yu. Fedyanin and Aleksey V. Arsenin  »View Author Affiliations


Optics Express, Vol. 19, Issue 13, pp. 12524-12531 (2011)
http://dx.doi.org/10.1364/OE.19.012524


View Full Text Article

Enhanced HTML    Acrobat PDF (1321 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel scheme of surface plasmon polariton (SPP) amplification that is based on a minority carrier injection in a Schottky diode. This scheme uses compact electrical pumping instead of bulky optical pumping. Compact size and a planar structure of the proposed amplifier allow one to utilize it in integrated plasmonic circuits and couple it easily to passive plasmonic devices. Moreover, this technique can be used to obtain surface plasmon lasing.

© 2011 OSA

OCIS Codes
(250.4480) Optoelectronics : Optical amplifiers
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 28, 2011
Revised Manuscript: June 9, 2011
Manuscript Accepted: June 9, 2011
Published: June 14, 2011

Citation
Dmitry Yu. Fedyanin and Aleksey V. Arsenin, "Surface plasmon polariton amplification in metal-semiconductor structures," Opt. Express 19, 12524-12531 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12524


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  2. M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010). [CrossRef] [PubMed]
  3. A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18(11), 11791–11799 (2010). [CrossRef] [PubMed]
  4. J. A. Conway, S. Sahni, and T. Szkopek, “Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs,” Opt. Express 15(8), 4474–4484 (2007). [CrossRef] [PubMed]
  5. M. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004). [CrossRef] [PubMed]
  6. J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005). [CrossRef] [PubMed]
  7. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008). [CrossRef] [PubMed]
  8. A. Kumar, S. F. Yu, X. F. Li, and S. P. Lau, “Surface plasmonic lasing via the amplification of coupled surface plasmon waves inside dielectric-metal-dielectric waveguides,” Opt. Express 16(20), 16113–16123 (2008). [CrossRef] [PubMed]
  9. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010). [CrossRef]
  10. I. Radko, M. G. Nielsen, O. Albrektsen, and S. I. Bozhevolnyi, “Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths,” Opt. Express 18(18), 18633–18641 (2010). [CrossRef] [PubMed]
  11. M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8(11), 3998–4001 (2008). [CrossRef] [PubMed]
  12. M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010). [CrossRef]
  13. A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11(6), 2231–2235 (2011), doi:. [CrossRef] [PubMed]
  14. P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010). [CrossRef] [PubMed]
  15. H. C. Card and B. L. Smith, “Green injection luminescence from forward-biased Au-GaP Schottky barriers,” J. Appl. Phys. 42(13), 5863 (1971). [CrossRef]
  16. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon emitting diode,” Nat. Photonics 2(11), 684–687 (2008). [CrossRef]
  17. N. K. Dutta and Q. Wang, Semiconductor Optical Amplifiers (World Scientific, 2006).
  18. H. C. Casey and M. B. Panish, Heterostructure Lasers, Part A (Academic, 1978).
  19. C. R. Crowell and S. M. Sze, “Current transport in metal-semiconductor barriers,” Solid-State Electron. 9(11-12), 1035–1048 (1966). [CrossRef]
  20. S. M. Sze, Physics of Semiconductor Devices (Wiley, 1981).
  21. J. Racko, D. Donoval, M. Barus, V. Nagl, and A. Grmanova, “Revised theory of current transport through the Schottky structure,” Solid-State Electron. 35(7), 913–919 (1992). [CrossRef]
  22. M. A. Green and J. Shewchun, “Minority carrier effects upon the small signal and steady-state properties of Schottky diodes,” Solid-State Electron. 16(10), 1141–1150 (1973). [CrossRef]
  23. R. K. Ahrenkiel, R. Ellingson, S. Johnston, and M. Wanlass, “Recombination lifetime of In0.53Ga0.47As as a function of doping density,” Appl. Phys. Lett. 72(26), 3470–3472 (1998). [CrossRef]
  24. D. Yu. Fedyanin, A. V. Arsenin, and D. N. Chigrin, “Semiconductor surface plasmon amplifier Based on a Schottky barrier diode,” AIP Conf. Proc. 1291, 112–114 (2010). [CrossRef]
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  26. D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt. 12(1), 015002 (2010). [CrossRef]
  27. D. Yu. Fedyanin and A. V. Arsenin, “Stored light in a plasmonic nanocavity based on extremely-small-energy-velocity modes,” Photonics Nanostruct. Fundam. Appl. 8(4), 264–272 (2010). [CrossRef]
  28. L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  29. B. I. Halperin and M. Lax, “Impurity-band tails in the high-density limit. I. Minimum counting methods,” Phys. Rev. 148(2), 722–740 (1966). [CrossRef]
  30. E. O. Kane, “Thomas-Fermi approach to impure semiconductor band structure,” Phys. Rev. 131(1), 79–88 (1963). [CrossRef]
  31. F. Stern, “Band-tail model for optical absorption and for the mobility edge in amorphous silicon,” Phys. Rev. B 3(8), 2636–2645 (1971). [CrossRef]
  32. H. C. Casey and F. Stern, “Concentration-dependent absorption and spontaneous emission on heavily doped GaAs,” J. Appl. Phys. 47(2), 631–643 (1976). [CrossRef]
  33. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003). [CrossRef] [PubMed]
  34. M. Uda, A. Nakamura, T. Yamamoto, and Y. Fujimoto, “Work function of polycrystalline Ag, Au and Al,” J. Electron Spectrosc. Relat. Phenom. 88-91, 643–648 (1998). [CrossRef]
  35. S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors (Wiley, 2009).
  36. Yu. A. Goldberg and N. M. Schmidt, Handbook Series on Semiconductor Parameters, Vol. 2 (World Scientific, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited