OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12551–12561

Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment

Ingar Stian Nerbø, Sebastien Le Roy, Martin Foldyna, Elin Søndergård, and Morten Kildemo  »View Author Affiliations

Optics Express, Vol. 19, Issue 13, pp. 12551-12561 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2160 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The formation of GaSb nanopillars by low energy ion sputtering is studied in real-time by spectroscopic Mueller matrix ellipsometry, from the initial formation in the smooth substrate until nanopillars with a height of 200 – 300 nm are formed. As the nanopillar height increased above 100 nm, coupling between orthogonal polarization modes was observed. Ex situ angle resolved Mueller polarimetry measurements revealed a 180° azimuth rotation symmetry in the off-diagonal Mueller elements, which can be explained by a biaxial material with different dielectric functions εx and εy in a plane parallel to the substrate. This polarization coupling can be caused by a tendency for local direction dependent alignment of the pillars, and such a tendency is confirmed by scanning electron microscopy. Such observations have not been made for GaSb nanopillars shorter than 100 nm, which have optical properties that can be modeled as a uniaxial effective medium.

© 2011 OSA

OCIS Codes
(160.4236) Materials : Nanomaterials
(310.6628) Thin films : Subwavelength structures, nanostructures
(240.2130) Optics at surfaces : Ellipsometry and polarimetry

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: April 6, 2011
Revised Manuscript: June 1, 2011
Manuscript Accepted: June 3, 2011
Published: June 14, 2011

Ingar Stian Nerbø, Sebastien Le Roy, Martin Foldyna, Elin Søndergård, and Morten Kildemo, "Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment," Opt. Express 19, 12551-12561 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. S. Nerbø, S. Le Roy, M. Kildemo, and E. Søndergård, “Real-time in situ spectroscopic ellipsometry of gasb nanostructures during sputtering,” Appl. Phys. Lett. 94, 213105 (2009). [CrossRef]
  2. S. Le Roy, E. Søndergård, I. S. Nerbø, M. Kildemo, and M. Plapp, “Diffuse-interface model for nanopatterning induced by self-sustained ion-etch masking,” Phys. Rev. B 81, 161401 (2010). [CrossRef]
  3. S. Le Roy, E. Søndergård, I. S. Nerbø, and M. Kildemo, “In-situ and real time study of the formation of nanopatterns on gasb by ion abrasion,” Phys. Rev. B (2011), in submission.
  4. H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew Publishing and Springer-Verlag GmbH and Co., 2005). [CrossRef]
  5. N. J. Podraza, C. Chen, I. An, G. M. Ferreira, P. I. Rovira, R. Messier, and R. W. Collins, “Analysis of the optical properties and structure of sculptured thin films from spectroscopic mueller matrix ellipsometry,” Thin Solid Films 455–456, 571–575 (2004).
  6. G. Beydaghyan, C. Buzea, Y. Cui, C. Elliott, and K. Robbie, “Ex situ ellipsometric investigation of nanocolumns inclination angle of obliquely evaporated silicon thin films,” Appl. Phys. Lett. 87, 153103 (2005). [CrossRef]
  7. B. Gallas, N. Guth, J. Rivory, H. Arwin, R. Magnusson, G. Guida, J. Yang, and K. Robbie, “Nanostructured chiral silver thin films: a route to metamaterials at optical frequencies,” Thin Solid Films , (2010), in production.
  8. D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films,” Opt. Lett. 34, 992 (2009). [CrossRef] [PubMed]
  9. I. S. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108, 014307 (2010). [CrossRef]
  10. M. Ranjan, T. W. H. Oates, S. Facsko, and W. Möller, “Optical properties of silver nanowire arrays with 35 nm periodicity,” Opt. Lett. 35, 2576–2578 (2010). [CrossRef] [PubMed]
  11. D. Aspnes, J. Harbison, A. Studna, and L. Florez, “Reflectance-difference spectroscopy system for real-time measurements of crystal growth,” Appl. Phys. Lett. 52, 957–959 (1988). [CrossRef]
  12. J. Bremer and O. Hunderi, “Ras studies of laterally nanostructured surfaces,” Phys. Stat. Solidi A 184, 89–100 (2001). [CrossRef]
  13. W. Richter, “In-situ observation of movpe epitaxial growth,” Appl. Phys. A 75, 129–140 (2002). [CrossRef]
  14. F. Everts, H. Wormeester, and B. Poelsema, “Optical anisotropy induced by ion bombardment of Ag(001),” Phys. Rev. B 78, 155419 (2008). [CrossRef]
  15. C. Chen, M. Horn, S. Pursel, C. Ross, and R. Collins, “The ultimate in real-time ellipsometry: multichannel mueller matrix spectroscopy,” Appl. Surface Sci. 253, 38–46 (2006). [CrossRef]
  16. E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, Inc., 2003).
  17. P. Hauge, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surface Sci. 96, 81–107 (1980). [CrossRef]
  18. D. W. Berreman, “Optics in stratified and anisotropic media: 4x4-matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972). [CrossRef]
  19. M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265–4274 (1996). [CrossRef]
  20. A. De Martino, S. Ben Hatit, and M. Foldyna, “Mueller polarimetry in the back focal plane,” in “Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series ,” (2007), vol. 6518.
  21. B. H. Ibrahim, S. B. Hatit, and A. De Martino, “Angle resolved mueller polarimetry with a high numerical aperture and characterization of transparent biaxial samples,” Appl. Opt. 48, 5025–5034 (2009). [CrossRef] [PubMed]
  22. S. B. Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved mueller polarimeter using a microscope objective,” Phys. Stat. Solidi A 205, 743–747 (2008). [CrossRef]
  23. I. S. Nerbø, M. Kildemo, S. Le Roy, I. Simonsen, E. Søndergård, L. Holt, and J. Walmsley, “Characterisation of nanostructured GaSb : comparison between large-area optical and local direct microscopic techniques,” Appl. Opt. 47, 5130–5139 (2008). [CrossRef] [PubMed]
  24. T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974). [CrossRef]
  25. E. Fort, C. Ricolleau, and J. Sau-Pueyo, “Dichroic thin films of silver nanoparticle chain arrays on facetted alumina templates,” Nano Lett. 3, 65–67 (2003). [CrossRef]
  26. S. Camelio, D. Babonneau, D. Lantiat, L. Simonot, and F. Pailloux, “Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion,” Phys. Rev. B 80, 1–10 (2009). [CrossRef]
  27. C. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977). [CrossRef]
  28. S. Le Roy, E. Barthel, N. Brun, A. Lelarge, and E. Søndergård, “Self-sustained etch masking: a new concept to initiate the formation of nanopatterns during ion erosion,” J. Appl. Phys. 106, 094308 (2009). [CrossRef]
  29. J. E. Spanier and I. P. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous sic films,” Phys. Rev. B 61, 10437–10450 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited