OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12569–12581

Design and comparison of GaAs, GaAsP and InGaAlAs quantum-well active regions for 808-nm VCSELs

Yan Zhang, Yongqiang Ning, Lisen Zhang, Jinsheng Zhang, Jianwei Zhang, Zhenfu Wang, Jian Zhang, Yugang Zeng, and Lijun Wang  »View Author Affiliations

Optics Express, Vol. 19, Issue 13, pp. 12569-12581 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1818 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Vertical-cavity surface-emitting lasers emitting at 808 nm with unstrained GaAs/Al0.3Ga0.7As, tensilely strained GaAsxP1-x/Al0.3Ga0.7As and compressively strained In1-x-yGaxAlyAs/Al0.3Ga0.7As quantum-well active regions have been investigated. A comprehensive model is presented to determine the composition and width of these quantum wells. The numerical simulation shows that the gain peak wavelength is near 800 nm at room temperature for GaAs well with width of 4 nm, GaAs0.87P0.13 well with width of 13 nm and In0.14Ga0.74Al0.12As well with width of 6 nm. Furthermore, the output characteristics of the three designed quantum-well VCSELs are studied and compared. The results indicate that In0.14Ga0.74Al0.12As is the most appropriate candidate for the quantum well of 808-nm VCSELs.

© 2011 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(160.3380) Materials : Laser materials
(270.3430) Quantum optics : Laser theory
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 18, 2011
Manuscript Accepted: June 1, 2011
Published: June 14, 2011

Yan Zhang, Yongqiang Ning, Lisen Zhang, Jinsheng Zhang, Jianwei Zhang, Zhenfu Wang, Jian Zhang, Yugang Zeng, and Lijun Wang, "Design and comparison of GaAs, GaAsP and InGaAlAs quantum-well active regions for 808-nm VCSELs," Opt. Express 19, 12569-12581 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Valle, M. Sciamanna, and K. Panajotov, “Nonlinear dynamics of the polarization of multitransverse mode vertical-cavity surface-emitting lasers under current modulation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(4), 046206 (2007). [CrossRef] [PubMed]
  2. Y. Ding, W. Fan, D. Xu, C. Tong, Y. Liu, and L. Zhao, “Low threshold current density, low resistance oxide-confined VCSEL fabricated by a dielectric-free approach,” Appl. Phys. B 98(4), 773–778 (2010). [CrossRef]
  3. L. A. D'Asaro, J. F. Seurin, and J. D. Wynn, “High-power, high-efficiency VCSELs pursue the goal,” Photon. Spectra 39, 62–66 (2005).
  4. E. Hugues-Salas, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, Y. Hong, C. Shu, and J. M. Tang, “Real-time experimental demonstration of low-cost VCSEL intensity-modulated 11.25 Gb/s optical OFDM signal transmission over 25 km PON systems,” Opt. Express 19(4), 2979–2988 (2011). [CrossRef] [PubMed]
  5. Z. Wang, Y. Ning, Y. Zhang, J. Shi, X. Zhang, L. Zhang, W. Wang, D. Liu, Y. Hu, H. Cong, L. Qin, Y. Liu, and L. Wang, “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Opt. Express 18(23), 23900–23905 (2010). [CrossRef] [PubMed]
  6. J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D'Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008). [CrossRef]
  7. J. Sakaguchi, T. Katayama, and H. Kawaguchi, “All-optical memory operation of 980-nm polarization bistable VCSEL for 20-Gb/s PRBS RZ and 40-Gb/s NRZ data signals,” Opt. Express 18(12), 12362–12370 (2010). [CrossRef] [PubMed]
  8. K. Iga, “Vertical-cavity surface-emitting laser: Its conception and evolution,” Jpn. J. Appl. Phys. 47(1), 1–10 (2008). [CrossRef]
  9. Y. K. Kuo, J. R. Chen, M. L. Chen, and B. T. Liou, “Numerical study on strained InGaAsP/InGaP quantum wells for 850-nm vertical-cavity surface-emitting lasers,” Appl. Phys. B 86(4), 623–631 (2007). [CrossRef]
  10. L. Mutter, B. Dwir, A. Caliman, V. Iakovlev, A. Mereuta, A. Sirbu, and E. Kapon, “Intra-cavity patterning for mode control in 1.3 μm coupled VCSEL arrays,” Opt. Express 19(6), 4827–4832 (2011). [CrossRef] [PubMed]
  11. A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Nonlinear dynamics induced by parallel and orthogonal optical injection in 1550 nm Vertical-Cavity Surface-Emitting Lasers (VCSELs),” Opt. Express 18(9), 9423–9428 (2010). [CrossRef] [PubMed]
  12. J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D'Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009). [CrossRef]
  13. L. Goldberg, C. McIntosh, and B. Cole, “VCSEL end-pumped passively Q-switched Nd:YAG laser with adjustable pulse energy,” Opt. Express 19(5), 4261–4267 (2011). [CrossRef] [PubMed]
  14. M. Grabherr, M. Miller, R. Jaeger, D. Wiedenmann, and R. King, “Commercial VCSELs reach 0.1 W cw output power,” Proc. SPIE 5364, 174–182 (2004). [CrossRef]
  15. Y.-Q. Hao, Y. Luo, Y. Feng, C.-L. Yan, Y.-J. Zhao, Y.-X. Wang, X.-H. Wang, Y. Qu, and G.-J. Liu, “Large aperture vertical cavity surface emitting laser with distributed-ring contact,” Appl. Opt. 50(7), 1034–1037 (2011). [CrossRef] [PubMed]
  16. PICS3D by Crosslight Software, Inc., Burnaby, Canada, 2005, http://www.crosslight.com .
  17. J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35(5), 771–782 (1999). [CrossRef]
  18. C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989). [CrossRef] [PubMed]
  19. S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors (Wiley, 2009).
  20. C. Chih-Sheng and C. Shun Lien, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron. 1(2), 218–229 (1995). [CrossRef]
  21. P. Zhang, Y. Song, J. Tian, X. Zhang, and Z. Zhang, “Gain characteristics of the InGaAs strained quantum wells with GaAs, AlGaAs, and GaAsP barriers in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 105(5), 053103 (2009). [CrossRef]
  22. J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations,” J. Cryst. Growth 27, 118–125 (1974).
  23. S. F. Yu, Analysis and Design of Vertical Cavity Surface Emitting Lasers (Wiley-Interscience, 2003).
  24. H. Soda, Y. Motegi, and K. Iga, “GaInAsP/InP surface emitting injection lasers with short cavity length,” IEEE J. Quantum Electron. 19(6), 1035–1041 (1983). [CrossRef]
  25. K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988). [CrossRef]
  26. B. Lu, P. Zhou, J. Cheng, K. J. Malloy, and J. C. Zolper, “High temperature pulsed and continuous-wave operation and thermally stable threshold characteristics of vertical-cavity surface-emitting lasers grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 65(11), 1337–1339 (1994). [CrossRef]
  27. M. Grabherr, R. Jager, M. Miller, C. Thalmaier, J. Herlein, R. Michalzik, and K. J. Ebeling, “Bottom-emitting VCSEL's for high-CW optical output power,” IEEE Photon. Technol. Lett. 10(8), 1061–1063 (1998). [CrossRef]
  28. Y.-K. Kuo, J.-R. Chen, M.-Y. Jow, C.-Z. Wu, B.-J. Pong, and C.-C. Chen, “Optimization of oxide-confinement and active layers for high-speed 850-nm VCSELs,” Proc. SPIE 6132, 61320M (2006). [CrossRef]
  29. L. Solymar and D. Walsh, Lectures on the Electrical Properties of Materials (Oxford University Press, 1985).
  30. C.-F. Hsu, P. S. Zory, C.-H. Wu, and M. A. Emanuel, “Coulomb enhancement in InGaAs-GaAs quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 158–165 (1997). [CrossRef]
  31. J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, “Minimum temperature sensitivity of 1.55 μm vertical-cavity lasers at −30 nm gain offset,” Appl. Phys. Lett. 72(15), 1814–1816 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited