OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12582–12593

A vector boundary matching technique for efficient and accurate determination of photonic bandgaps in photonic bandgap fibers

Liang Dong  »View Author Affiliations


Optics Express, Vol. 19, Issue 13, pp. 12582-12593 (2011)
http://dx.doi.org/10.1364/OE.19.012582


View Full Text Article

Enhanced HTML    Acrobat PDF (1211 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A vector boundary matching technique has been proposed and demonstrated for finding photonic bandgaps in photonic bandgap fibers with circular nodes. Much improved accuracy, comparing to earlier works, comes mostly from using more accurate cell boundaries for each mode at the upper and lower edges of the band of modes. It is recognized that the unit cell boundary used for finding each mode at band edges of the 2D cladding lattice is not only dependent on whether it is a mode at upper or lower band edge, but also on the azimuthal mode number and lattice arrangements. Unit cell boundaries for these modes are determined by mode symmetries which are governed by the azimuthal mode number as well as lattice arrangement due to mostly geometrical constrains. Unit cell boundaries are determined for modes at both upper and lower edges of bands of modes dominated by m = 1 and m = 2 terms in their longitudinal field Fourier-Bessel expansion series, equivalent to LP0s and LP1s modes in the approximate LP mode representations, for hexagonal lattice to illustrate the technique. The novel technique is also implemented in vector form and incorporates a transfer matrix algorithm for the consideration of nodes with arbitrary refractive index profiles. Both are desired new capabilities for further explorations of advanced new designs of photonic bandgap fibers.

© 2011 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 18, 2011
Revised Manuscript: May 31, 2011
Manuscript Accepted: June 7, 2011
Published: June 14, 2011

Citation
Liang Dong, "A vector boundary matching technique for efficient and accurate determination of photonic bandgaps in photonic bandgap fibers," Opt. Express 19, 12582-12593 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12582


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. B. Olausson, C. I. Falk, J. K. Lyngsø, B. B. Jensen, K. T. Therkildsen, J. W. Thomsen, K. P. Hansen, A. Bjarklev, and J. Broeng, “Amplification and ASE suppression in a polarization-maintaining ytterbium-doped all-solid photonic bandgap fibre,” Opt. Express 16(18), 13657–13662 (2008). [CrossRef] [PubMed]
  2. A. Shirakawa, C. B. Olausson, H. Maruyama, K. Ueda, J. K. Lyngsø, and J. Broeng, “High power ytterbium fiber lasers at extremely long wavelengths by photonic bandgap fiber technology,” Opt. Fiber Technol. 16(6), 449–457 (2010). [CrossRef]
  3. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29(20), 2369–2371 (2004). [CrossRef] [PubMed]
  4. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. St. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express 13(1), 309–314 (2005). [CrossRef] [PubMed]
  5. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. St J Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Opt. Express 13(7), 2503–2511 (2005). [CrossRef] [PubMed]
  6. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm,” Opt. Express 13(21), 8452–8459 (2005). [CrossRef] [PubMed]
  7. J. M. Stone, G. J. Pearce, F. Luan, T. A. Birks, J. C. Knight, A. K. George, and D. M. Bird, “An improved photonic bandgap fiber based on an array of rings,” Opt. Express 14(13), 6291–6296 (2006). [CrossRef] [PubMed]
  8. G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71(19), 195108 (2005). [CrossRef]
  9. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers, I. formulation,” J. Opt. Soc. Am. B 19(10), 2322–2330 (2002). [CrossRef]
  10. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers, II. implementation and results,” J. Opt. Soc. Am. B 19(10), 2331–2340 (2002). [CrossRef]
  11. T. White, R. McPhedran, L. Botten, G. Smith, and C. M. de Sterke, “Calculations of air-guided modes in photonic crystal fibers using the multipole method,” Opt. Express 9(13), 721–732 (2001). [CrossRef] [PubMed]
  12. T. A. Birks, G. J. Pearce, and D. M. Bird, “Approximate band structure calculation for photonic bandgap fibres,” Opt. Express 14(20), 9483–9490 (2006). [CrossRef] [PubMed]
  13. A. W. Snyder, and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited