OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12658–12663

High-performance GaN metal–insulator–semiconductor ultraviolet photodetectors using gallium oxide as gate layer

Ming-Lun Lee, T. S. Mue, F.W. Huang, J. H. Yang, and J. K. Sheu  »View Author Affiliations


Optics Express, Vol. 19, Issue 13, pp. 12658-12663 (2011)
http://dx.doi.org/10.1364/OE.19.012658


View Full Text Article

Enhanced HTML    Acrobat PDF (983 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, gallium nitride (GaN)-based metal–insulator–semiconductor (MIS) ultraviolet (UV) photodetectors (PDs) with a gallium oxide (GaOx) gate layer formed by alternating current bias-assisted photoelectrochemical oxidation of n-GaN are presented. By introducing the GaOx gate layer to the GaN MIS UV PDs, the leakage current is reduced and a much larger UV-to-visible rejection ratio (RUV/vis) of spectral responsivity is achieved. In addition, a bias-dependent spectral response results in marked increase of the RUV/vis with bias voltage up to ~105. The bias-dependent responsivity suggests the possible existence of internal gain in of the GaN MIS PDs.

© 2011 OSA

OCIS Codes
(230.0040) Optical devices : Detectors
(230.0250) Optical devices : Optoelectronics
(230.5160) Optical devices : Photodetectors

ToC Category:
Detectors

History
Original Manuscript: April 14, 2011
Revised Manuscript: May 23, 2011
Manuscript Accepted: May 24, 2011
Published: June 15, 2011

Citation
Ming-Lun Lee, T. S. Mue, F.W. Huang, J. H. Yang, and J. K. Sheu, "High-performance GaN metal–insulator–semiconductor ultraviolet photodetectors using gallium oxide as gate layer," Opt. Express 19, 12658-12663 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12658


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Muñoz, E. Monroy, J. L. Pau, F. Calle, F. Omnès, and P. Gibart, “III nitrides and UV detection,” J. Phys. Condens. Matter 13(32), 7115–7137 (2001) (and references therein). [CrossRef]
  2. K. H. Chang, J. K. Sheu, M. L. Lee, S. J. Tu, C. C. Yang, H. S. Kuo, J. H. Yang, and W. C. Lai, “Inverted Al0.25Ga0.75N/GaN ultraviolet p-i-n photodiodes formed on p-GaN template layer grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 97(1), 013502 (2010) (and references therein). [CrossRef]
  3. G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, U. K. Mishra, and E. J. Tarsa, “High-performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN,” Appl. Phys. Lett. 75(2), 247–249 (1999). [CrossRef]
  4. E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez, and M. Razeghi, “High-quality visible-blind AlGaN p-i-n photodiodes,” Appl. Phys. Lett. 74(8), 1171–1173 (1999). [CrossRef]
  5. M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, J. M. Tsai, and G. C. Chi, “GaN Schottky barrier photodetectors with a low-temperature GaN cap layer,” Appl. Phys. Lett. 82(17), 2913–2915 (2003). [CrossRef]
  6. J. K. Sheu, M. L. Lee, and W. C. Lai, “Effect of low-temperature-grown GaN cap layer on reduced leakage current of GaN Schottky diodes,” Appl. Phys. Lett. 86(5), 052103 (2005). [CrossRef]
  7. M. L. Lee, T. S. Mue, J. K. Sheu, K. H. Chang, S. J. Tu, and T. H. Hsueh, “Effect of thermal annealing on GaN metal-oxide-semiconductor capacitors with gallium oxide gate layer,” J. Electrochem. Soc. 157(11), H1019–H1022 (2010) (and references therein). [CrossRef]
  8. C. T. Lee, H. W. Chen, and H. Y. Lee, “Metal–oxide–semiconductor devices using Ga2O3 dielectrics on n-type GaN,” Appl. Phys. Lett. 82(24), 4304–4306 (2003). [CrossRef]
  9. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “Inductively Coupled Plasma Etching of GaN using Cl2/Ar and Cl2/N2 Gases,” J. Appl. Phys. 85(3), 1970–1974 (1999). [CrossRef]
  10. M. L. Lee, J. K. Sheu, and C. C. Hu, “Nonalloyed Cr/Au-based Ohmic contacts to n-GaN,” Appl. Phys. Lett. 91(18), 182106 (2007). [CrossRef]
  11. E. Monroy, F. Calle, J. L. Pau, E. Muñoz, F. Omnès, B. Beaumont, and P. Gibart, “AlGaN-based UV photodetectors,” J. Cryst. Growth 230(3–4), 537–543 (2001). [CrossRef]
  12. J. D. Hwang, G. H. Yang, Y. Y. Yang, and P. C. Yao, “Nitride-Based UV Metal–Insulator–Semiconductor Photodetector with Liquid-Phase-Deposition Oxide,” Jpn. J. Appl. Phys. 44(11), 7913–7915 (2005). [CrossRef]
  13. Y. Z. Chiou, Y. K. Su, S. J. Chang, J. Gong, C. S. Chang, and S. H. Liu, “The properties of photo chemical-vapor deposition SiO2 and its application in GaN metal-insulator semiconductor ultraviolet photodetectors,” J. Electron. Mater. 32(5), 395–399 (2003). [CrossRef]
  14. L. Binet and D. Gourier, “Origin of The Blue Luminescence of β-Ga2O3,” J. Phys. Chem. Solids 59(8), 1241–1249 (1998). [CrossRef]
  15. B. C. Hsu, S. T. Chang, T. C. Chen, P. S. Kuo, P. S. Chen, Z. Pei, and C. W. Liu, “A High Efficient 820 nm MOS Ge Quantum Dot Photodetector,” IEEE Electron Device Lett. 24(5), 318–320 (2003) (and references therein). [CrossRef]
  16. M. L. Lee, J. K. Sheu, and Y. R. Shu, “Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransitors with high optical gain and high rejection ratio,” Appl. Phys. Lett. 92(5), 053506 (2008). [CrossRef]
  17. P. C. Chang, C. L. Yu, S. J. Chang, Y. C. Lin, C. H. Liu, and S. L. Wu, “Low-Noise and High-Detectivity GaN-Based UV Photodiode With a Semi-Insulating Mg-Doped GaN Cap Layer,” IEEE Sens. J. 7(9), 1270–1273 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited