OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12679–12687

Effects of a silicon probe on gold nanoparticles on glass under evanescent illumination

Gazi M. Huda, Eugenii U. Donev, M. Pinar Mengüç, and J. Todd Hastings  »View Author Affiliations


Optics Express, Vol. 19, Issue 13, pp. 12679-12687 (2011)
http://dx.doi.org/10.1364/OE.19.012679


View Full Text Article

Enhanced HTML    Acrobat PDF (1157 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have numerically investigated the influence of a nanoscale silicon tip in proximity to an illuminated gold nanoparticle. We describe how the position of the high-permittivity tip and the size of the nanoparticle impact the absorption, peak electric field and surface plasmon resonance wavelength under different illumination conditions. We detail the finite element method (FEM) approach we have used, whereby we specify a volume excitation field analytically and calculate the difference between this source field and the total field (i.e., scattered-field formulation). We show that a nanoscale tip can locally enhance the absorption of the particle as well as the peak electric field at length scales far smaller than the wavelength of the incident light.

© 2011 OSA

OCIS Codes
(260.6970) Physical optics : Total internal reflection
(290.4020) Scattering : Mie theory
(300.1030) Spectroscopy : Absorption
(350.4990) Other areas of optics : Particles
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 28, 2011
Revised Manuscript: June 8, 2011
Manuscript Accepted: June 9, 2011
Published: June 16, 2011

Citation
Gazi M. Huda, Eugenii U. Donev, M. Pinar Mengüç, and J. Todd Hastings, "Effects of a silicon probe on gold nanoparticles on glass under evanescent illumination," Opt. Express 19, 12679-12687 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12679


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006). [CrossRef]
  2. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007). [CrossRef]
  3. E. A. Hawes, J. T. Hastings, C. Crofcheck, and M. P. Mengüç, “Spatially selective melting and evaporation of nanosized gold particles,” Opt. Lett. 33(12), 1383–1385 (2008). [CrossRef] [PubMed]
  4. P. G. Venkata, M. M. Aslan, M. P. Menguc, and G. Videen, “Surface Plasmon Scattering by Gold Nanoparticles and Two-Dimensional Agglomerates,” J. Heat Transfer 129(1), 60–70 (2007). [CrossRef]
  5. V. L. Y. Loke and M. P. Mengüç, “Surface waves and atomic force microscope probe-particle near-field coupling: discrete dipole approximation with surface interaction,” J. Opt. Soc. Am. A 27(10), 2293–2303 (2010). [CrossRef]
  6. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005). [CrossRef]
  7. M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009). [CrossRef] [PubMed]
  8. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005). [CrossRef] [PubMed]
  9. R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, “Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips,” Opt. Express 14(7), 2921–2931 (2006). [CrossRef] [PubMed]
  10. X. Chen and X. Wang, “Near-field thermal transport in a nanotip under laser irradiation,” Nanotechnology 22(7), 075204 (2011). [CrossRef] [PubMed]
  11. R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, “Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe,” Appl. Phys. Lett. 83(2), 368–370 (2003). [CrossRef]
  12. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman Spectroscopy,” Ann. Rev. Anal. Chem. (Palo Alto Calif) 1(1), 601–626 (2008). [CrossRef]
  13. A. Rasmussen and V. Deckert, “Surface- and tip-enhanced Raman scattering of DNA components,” J. Raman Spectrosc. 37(1-3), 311–317 (2006). [CrossRef]
  14. R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: numerical modeling of the lock-in detection,” Opt. Commun. 232(1-6), 15–23 (2004). [CrossRef]
  15. W. Chen, A. Kimel, A. Kirilyuk, and T. Rasing, “Apertureless SNOM study on gold nanoparticles: Experiments and simulations,” Phys. Stat. Solidi B 247(8), 2047–2050 (2010). [CrossRef]
  16. R. Esteban, R. Vogelgesang, and K. Kern, “Full simulations of the apertureless scanning near field optical microscopy signal: achievable resolution and contrast,” Opt. Express 17(4), 2518–2529 (2009). [CrossRef] [PubMed]
  17. R. L. Stiles, K. A. Willets, L. J. Sherry, J. M. Roden, and R. P. Van Duyne, “Investigating tip-nanoparticle interactions in spatially correlated total internal reflection plasmon spectroscopy and atomic force microscopy,” J. Phys. Chem. C 112(31), 11696–11701 (2008). [CrossRef]
  18. D. Sadiq, J. Shirdel, J. S. Lee, E. Selishcheva, N. Park, and C. Lienau, “Adiabatic Nanofocusing Scattering-Type Optical Nanoscopy of Individual Gold Nanoparticles,” Nano Lett. 11(4), 1609–1613 (2011). [CrossRef] [PubMed]
  19. Finite Element Analysis Simulation Software, Available from http://www.comsol.com .
  20. A. Optics, “SCHOTT,” (2011), http://edit.schott.com/advanced_optics/us/abbe_datasheets/schott_datasheet_n-bk7.pdf
  21. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  22. B. Sensors, “AFM probe Model Tap300Al-G “, http://www.budgetsensors.com/tapping_mode_afm_aluminium.html .
  23. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).
  24. G. Mie, “Contributions on the optics of turbid media, particularly colloidal metal solutions,” Ann. Phys. IV, 25 (1908).
  25. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, 1983).
  26. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2008).
  27. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited