OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12688–12699

Overcoming the losses of a split ring resonator array with gain

Anan Fang, Zhixiang Huang, Thomas Koschny, and Costas M. Soukoulis  »View Author Affiliations

Optics Express, Vol. 19, Issue 13, pp. 12688-12699 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (890 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a computational approach, allowing for a self-consistent treatment of a split ring resonator (SRR) array with a gain layer underneath. We apply three different pumping schemes on the gain layer: (1) homogeneously pumped isotropic gain, (2) homogeneously pumped isotropic gain with a shadow cast by the SRR and (3) anisotropic gain pumped in a selected direction only. We show numerically the magnetic losses of the SRR can be compensated by the gain. The difference on loss compensations among the three pumping schemes is analyzed by the electric field distribution. Studies also show the dielectric background of gain does not affect the loss compensation much for the gain only pumped in the direction parallel to the SRR plane.

© 2011 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: January 4, 2011
Revised Manuscript: May 24, 2011
Manuscript Accepted: June 2, 2011
Published: June 16, 2011

Anan Fang, Zhixiang Huang, Thomas Koschny, and Costas M. Soukoulis, "Overcoming the losses of a split ring resonator array with gain," Opt. Express 19, 12688-12699 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, “Negative refraction,” Contemp. Phys. 45, 191–202 (2004). [CrossRef]
  2. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005). [CrossRef]
  3. C. M. Soukoulis, M. Kafesaki, and E. N. Economou, “Negative-index materials: New frontiers in optics,” Adv. Mater. 18, 1941–1952 (2006). [CrossRef]
  4. V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photon. 1, 41–48 (2007). [CrossRef]
  5. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007). [CrossRef] [PubMed]
  6. C. M. Soukoulis and M. Wegener, “Optical metamaterials–more bulky and less lossy,” Science 330, 1633–1634 (2010). [CrossRef] [PubMed]
  7. F. Capolino, Theory and Phenomena of Metamaterials (CRC Press, Taylor and Francis Group, 2009). [CrossRef]
  8. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  9. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef] [PubMed]
  10. J. Zhou, Th. Koschny, and C. M. Soukoulis, “An efficient way to reduce losses of left-handed metamaterials,” Opt. Express 16, 11147–11152 (2008). [CrossRef] [PubMed]
  11. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008). [CrossRef] [PubMed]
  12. J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B 80, 035109 (2009). [CrossRef]
  13. D. O. Guney, Th. Koschny, and C. M. Soukoulis, “Reducing ohmic losses in metamaterials by geometric tailoring,” Phys. Rev. B 80, 125129 (2009). [CrossRef]
  14. S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101 (2003).
  15. N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85, 5040–5042 (2004). [CrossRef]
  16. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31, 3022–3024 (2006). [CrossRef] [PubMed]
  17. T. A. Klar, “Negative-index metamaterials: Going optical,” IEEE J. Sel. Top. Quantum Electron. 12, 1106–1115 (2006). [CrossRef]
  18. A. K. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B 75, 085436 (2007). [CrossRef]
  19. Y. Sivan, S. Xiao, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Frequency-domain simulations of a negative-index material with embedded gain,” Opt. Express 17, 24060–24074 (2009). [CrossRef]
  20. A. D. Boardman, Yu. G. Rapoport, N. King, and V. N. Malnev, “Creating stable gain in active metamaterials,” J. Opt. Soc. Am. B 24, A53–A61 (2007). [CrossRef]
  21. A. N. Lagarkov, V. N. Kisel, and A. K. Sarychev, “Loss and gain in metamaterials,” J. Opt. Soc. Am. B 27, 648–659 (2010). [CrossRef]
  22. M. Wegener, J. Luis Garca-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16, 19785–19798 (2008). [CrossRef] [PubMed]
  23. A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79, 241104 (2009). [CrossRef]
  24. A. Fang, Th. Koschny, and C. M. Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt. 12, 024013 (2010). [CrossRef]
  25. A. Fang, Th. Koschny, and C. M. Soukoulis, “Self-consistent calculations of loss-compensated fishnet metamaterials,” Phys. Rev. B 82, 121102 (2010). [CrossRef]
  26. S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming Losses with Gain in a Negative Refractive Index Metamaterial,” Phys. Rev. Lett. 105, 127401 (2010). [CrossRef] [PubMed]
  27. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008). [CrossRef]
  28. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003). [CrossRef] [PubMed]
  29. M. I. Stockman, “Spasers explained,” Nat. Photonics 2, 327–329 (2008). [CrossRef]
  30. K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold Enhancement of Quantum Dot Luminescence in Plasmonic Metamaterials,” Phys. Rev. Lett. 105, 227403 (2010). [CrossRef]
  31. N. Meinzer, M. Ruther, S. Linden, C. M. Soukoulis, G. Khitrova, J. Hendrickson, J. D. Olitsky, H. M. Gibbs, and M. Wegener, “Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain,” Opt. Express 18, 24140–24151 (2010). [CrossRef] [PubMed]
  32. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010). [CrossRef] [PubMed]
  33. A. E. Siegman, Lasers (Hill Valley, 1986), Chaps. 2, 3, 6, and 13.
  34. A. Taflove, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech House, London, 1995). See Chaps. 3, 6, and 7.
  35. D. R. Smith, S. Schultz, P. Markoŝ, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
  36. Th. Koschny, P. Markoŝ, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005). [CrossRef]
  37. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004). [CrossRef]
  38. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited