OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12719–12726

Enhanced output power of GaN-based LEDs with embedded AlGaN pyramidal shells

Shang-Ju Tu, Jinn-Kong Sheu, Ming-Lun Lee, Chih-Ciao Yang, Kuo-Hua Chang, Yu-Hsiang Yeh, Feng-Wen Huang, and Wei-Chih Lai  »View Author Affiliations


Optics Express, Vol. 19, Issue 13, pp. 12719-12726 (2011)
http://dx.doi.org/10.1364/OE.19.012719


View Full Text Article

Enhanced HTML    Acrobat PDF (1050 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this article, the characteristics of GaN-based LEDs grown on Ar-implanted GaN templates to form inverted Al0.27Ga0.83N pyramidal shells beneath an active layer were investigated. GaN-based epitaxial layers grown on the selective Ar-implanted regions had lower growth rates compared with those grown on the implantation-free regions. This resulted in selective growth, and formation of V-shaped concaves in the epitaxial layers. Accordingly, the inverted Al0.27Ga0.83N pyramidal shells were formed after the Al0.27Ga0.83N and GaN layers were subsequently grown on the V-shaped concaves. The experimental results indicate that the light-output power of LEDs with inverted AlGaN pyramidal shells was higher than those of conventional LEDs. With a 20 mA current injection, the output power was enhanced by 10% when the LEDs were embedded with inverted Al0.27Ga0.83N pyramidal shells. The enhancement in output power was primarily due to the light scattering at the Al0.27Ga0.83N/GaN interface, which leads to a higher escape probability for the photons, that is, light-extraction efficiency. Based on the ray tracing simulation, the output power of LEDs grown on Ar-implanted GaN templates can be enhanced by over 20% compared with the LEDs without the embedded AlGaN pyramidal shells, if the AlGaN layers were replaced by Al0.5Ga0.5N layers.

© 2011 OSA

OCIS Codes
(230.0250) Optical devices : Optoelectronics
(230.3670) Optical devices : Light-emitting diodes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:
Optical Devices

History
Original Manuscript: February 16, 2011
Revised Manuscript: June 9, 2011
Manuscript Accepted: June 10, 2011
Published: June 16, 2011

Citation
Shang-Ju Tu, Jinn-Kong Sheu, Ming-Lun Lee, Chih-Ciao Yang, Kuo-Hua Chang, Yu-Hsiang Yeh, Feng-Wen Huang, and Wei-Chih Lai, "Enhanced output power of GaN-based LEDs with embedded AlGaN pyramidal shells," Opt. Express 19, 12719-12726 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12719


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, 2006), pp. 150–160.
  2. R. J. Shul, L. Zhang, A. G. Baca, C. G. Willison, J. Han, S. J. Pearton, F. Ren, J. C. Zolper, and L. F. Lester, “High density plasma-induced etch damage in GaN,” Mater. Res. Soc. Symp. Proc. 573, 271–273 (1999). [CrossRef]
  3. X. A. Cao, S. J. Pearton, A. P. Zhang, G. T. Dang, F. Ren, R. J. Shul, L. Zhang, R. Hickman, and J. M. Van Hove, “Electrical effects of plasma damage in p-GaN,” Appl. Phys. Lett. 75(17), 2569–2571 (1999). [CrossRef]
  4. C. M. Tsai, J. K. Sheu, P. T. Wang, W. C. Lai, S. C. Shei, S. J. Chang, C. H. Kuo, C. W. Kuo, and Y. K. Su, “High efficiency and improved ESD characteristics of GaN-based LEDs with naturally textured surface grown by MOCVD,” IEEE Photon. Technol. Lett. 18(11), 1213–1215 (2006). [CrossRef]
  5. J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei, and W. C. Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface,” Appl. Phys. Lett. 88(11), 113505 (2006). [CrossRef]
  6. D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates,” IEEE Photon. Technol. Lett. 17(2), 288–290 (2005). [CrossRef]
  7. D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu, and M. H. Pan, “Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes,” J. Electrochem. Soc. 153(8), G765–G770 (2006). [CrossRef]
  8. H. C. Lin, R. S. Lin, J.-I. Chyi, and C.-M. Lee, “Light output enhancement of InGaN light- emitting diodes grown on masklessly etched sapphire substrates,” IEEE Photon. Technol. Lett. 20(19), 1621–1623 (2008). [CrossRef]
  9. H. W. Huang, J. K. Huang, C. H. Lin, K. Y. Lee, H. W. Hsu, C. C. Yu, and H. C. Kuo, “Efficiency improvement of GaN-based LEDs with a SiO2 nanorod array and a patterned sapphire substrate,” IEEE Electron Device Lett. 31(6), 582–584 (2010). [CrossRef]
  10. J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang, and G. C. Chi, “Low-operation voltage of InGaN-GaN light-emitting diodes with Si-doped In0.3Ga0.7N/GaN short-period superlattice tunneling contact layer,” IEEE Electron Device Lett. 22(10), 460–462 (2001). [CrossRef]
  11. C. Liu, B. Mensching, M. Zeitler, K. Volz, and B. Rauschenbach, “Ion implantation in GaN at liquid-nitrogen temperature: Structural characteristics and amorphization,” Phys. Rev. B 57(4), 2530–2535 (1998). [CrossRef]
  12. J. K. Sheu, Y. S. Lu, M. L. Lee, W. C. Lai, C. H. Kuo, and C. J. Tun, “Enhanced efficiency of GaN- based Light-Emitting Diodes with periodic textured Ga-doped ZnO transparent contact layer,” Appl. Phys. Lett. 90(26), 263511 (2007). [CrossRef]
  13. C. M. Tsai, J. K. Sheu, W. C. Lai, M. L. Lee, S. J. Chang, C. S. Chang, T. K. Ko, and C. F. Shen, “GaN-based LEDs output power improved by textured GaN/sapphire interface using in situ SiH4 treatment process during epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1275–1280 (2009). [CrossRef]
  14. Y. B. Lee, T. Wang, Y. H. Liu, J. P. Ao, Y. Izumi, Y. Lacroix, H. D. Li, J. Bai, Y. Naoi, and S. Sakai, “High-performance 348 nm AlGaN/GaN based ultraviolet light emitting diode with a SiN buffer layer,” Jpn. J. Appl. Phys. 41(Part 1, No. 7A), 4450–4453 (2002). [CrossRef]
  15. S. E. Park, S. M. Lim, C. R. Lee, C. S. Kim, and B. O, “Influence of SiN buffer layer in GaN epilayers,” J. Cryst. Growth 249(3–4), 487–491 (2003). [CrossRef]
  16. S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281(5379), 955–961 (1998). [CrossRef] [PubMed]
  17. S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5(10), 810–816 (2006). [CrossRef] [PubMed]
  18. T. Mukai and S. Nakamura, “Ultraviolet InGaN and GaN single quantum well structure light emitting diodes grown on epitaxially laterally overgrown GaN substrates,” Jpn. J. Appl. Phys. 38(Part 1, No. 10), 5735–5739 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited