OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12727–12739

Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators

William S. Fegadolli, Vilson R. Almeida, and José Edimar Barbosa Oliveira  »View Author Affiliations


Optics Express, Vol. 19, Issue 13, pp. 12727-12739 (2011)
http://dx.doi.org/10.1364/OE.19.012727


View Full Text Article

Enhanced HTML    Acrobat PDF (1677 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel tunable and reconfigurable thermo-optical device is theoretically proposed and analyzed in this paper. The device is designed to be entirely compatible with CMOS process and to work as a thermo-optical filter or modulator. Numerical results, made by means of analytical and Finite-Difference Time-Domain (FDTD) methods, show that a compact device enables a broad bandwidth operation, of up to 830 GHz, which allows the device to work under a large temperature variation, of up to 96 K.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.6840) Materials : Thermo-optical materials

ToC Category:
Integrated Optics

History
Original Manuscript: March 24, 2011
Revised Manuscript: May 29, 2011
Manuscript Accepted: June 3, 2011
Published: June 16, 2011

Citation
William S. Fegadolli, Vilson R. Almeida, and José Edimar Barbosa Oliveira, "Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators," Opt. Express 19, 12727-12739 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12727


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Pavesi and G. Guillot, Optical Interconnects - the silicon approach (Springer-Verlag, Heidelberg, 2006).
  2. M. L. Calvo and V. Lakshminarayanan, Optical Waveguides: From Theory to Applied Technologies (CRC Press; 1 edition 2007)
  3. B. S. Schmidt, V. R. Almeida, C. Manolatou, S. F. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85(21), 4854–4856 (2004). [CrossRef]
  4. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  5. X. Wang, T. Liu, V. R. de Almeida, and R. R. Panepucci, “On-chip silicon photonic wavelength control of optical fiber lasers,” Opt. Express 16(20), 15671–15676 (2008). [CrossRef] [PubMed]
  6. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
  7. Y. Chung, D.-G. Kim, and N. Dagli, “Reflection Properties of Coupled-Ring Reflectors,” J. Lightwave Technol. 24, 1865 (2006). [CrossRef]
  8. R. K. Dokania, A. B. Apsel, “Analysis of challenges for on-chip optical interconnects,” Proceedings of the 19th ACM Great Lakes symposium on VLSI, 275–280, (2009)
  9. B. Frey, D. Leviton, and T. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J, 62732J-10 (2006). [CrossRef]
  10. J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices,” Opt. Lett. 35(7), 1013–1015 (2010). [CrossRef] [PubMed]
  11. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009). [CrossRef] [PubMed]
  12. J.-M. Lee, D.-J. Kim, H. Ahn, S.-H. Park, and G. Kim, “Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer,” J. Lightwave Technol. 25(8) 2236–2243 (2007). [CrossRef]
  13. M. Uenuma and T. Moooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34(5), 599–601 (2009). [CrossRef] [PubMed]
  14. B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18(4), 3487–3493 (2010). [CrossRef] [PubMed]
  15. W. S. Fegadolli, V. R. Almeida, and J. E. B. Oliveira, “Highly Insensitive to Temperature and Ultra-Broadband Silicon Electro-optic Modulator,” in Latin America Optics and Photonics Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper WI3.
  16. Q. Li, S. Yegnanarayanan, M. Soltani, P. Alipour, and A. Adibi, “A temperature-insensitive third-order coupled-resonator filter for on-chip terabit/s optical interconnects,” IEEE Photon. Technol. Lett. 22(23), 1768–1770 (2010). [CrossRef]
  17. F. Xia, L. Sekaric, M. O’Boyle, and Yu. A. Vlasov, “Coupled resonator optical waveguides (CROWs) based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89(4), 041122 (2006). [CrossRef]
  18. S.-Y. Cho and R. Soref, “Interferometric microring-resonant 2 x 2 optical switches,” Opt. Express 16(17), 13304–13314 (2008). [CrossRef] [PubMed]
  19. M. Popovic, C. Manolatou, and M. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express 14(3), 1208–1222 (2006). [CrossRef] [PubMed]
  20. J. K. S. Poon, J. Scheuer, and A. Yariv, “Wavelength-selective reflector based on a circular array of coupled microring resonators,” IEEE Photon. Technol. Lett. 16(5), 1331–1333 (2004). [CrossRef]
  21. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009). [CrossRef]
  22. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002). [CrossRef]
  23. W. D. Fegadolli, V. R. Almeida, O. L. Coutinho, and J. E. B. Oliveira, “Highly Linear Electro-optic Modulator Based on Ring Resonator,” in Latin America Optics and Photonics Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper WD3
  24. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010). [CrossRef] [PubMed]
  25. A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18(17), 18312–18323 (2010). [CrossRef] [PubMed]
  26. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008). [CrossRef] [PubMed]
  27. Y.-T. Han, J.-U. Shin, D.-J. Kim, S.-H. Park, Y.-J. Park, and H.-K. Sung, “A Rigorous 2D Approximation Technique for 3D Waveguide Structures for BPM Calculations,” ETRI Journal 25(6), 535–537 (2003). [CrossRef]
  28. J.-M. Lee, D.-J. Kim, H. Ahn, S.-H. Park, and G. Kim, “Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer,” J. Lightwave Technol. 25(8) 2236–2243 (2007). [CrossRef]
  29. B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express 18(3), 1879–1887 (2010). [CrossRef] [PubMed]
  30. G.S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature, 2009.
  31. T. Barwicz, M. A. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of Add-Drop Filters Based on Frequency-Matched Microring Resonators,” J. Lightwave Technol. 24(5), 2207–2218 (2006). [CrossRef]
  32. G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010). [CrossRef] [PubMed]
  33. F. Xia, L. Sekaric, and Y. Vlasov, “Ultra-compact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007). [CrossRef]
  34. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004). [CrossRef] [PubMed]
  35. R. Pafchek, R. Tummidi, J. Li, M. A. Webster, E. Chen, and T. L. Koch, “Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation,” Appl. Opt. 48(5), 958–963 (2009). [CrossRef] [PubMed]
  36. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001). [CrossRef]
  37. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon Waveguide Sidewall Smoothing by Wet Chemical Oxidation,” J. Lightwave Technol. 23, 2455 (2005). [CrossRef]
  38. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett. 29(24), 2867–2869 (2004). [CrossRef]
  39. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (3559 KB)     
» Media 2: AVI (2887 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited