OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12766–12780

Active-mirror-laser-amplifier thermal management with tunable helium pressure at cryogenic temperatures

Antonio Lucianetti, Daniel Albach, and Jean-Christophe Chanteloup  »View Author Affiliations

Optics Express, Vol. 19, Issue 13, pp. 12766-12780 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (903 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We illustrate the benefits of a thin, low pressure helium cell for efficient and safe heat removal in cryogenically-cooled active mirror laser amplifiers operating in the [100 J-1 kJ] / [1-10 Hz] range. A homogeneous gain medium temperature distribution averaging 160 K is obtained with a sub-mm helium-filled gap between the gain medium and a copper plate at 77 K. A significant degree of flexibility for tuning the temperature in the amplifier can be achieved by varying the pressure of the helium gas in the 102 to 105 Pa range.

© 2011 OSA

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.6810) Lasers and laser optics : Thermal effects
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 27, 2011
Revised Manuscript: June 9, 2011
Manuscript Accepted: June 9, 2011
Published: June 16, 2011

Antonio Lucianetti, Daniel Albach, and Jean-Christophe Chanteloup, "Active-mirror-laser-amplifier thermal management with tunable helium pressure at cryogenic temperatures," Opt. Express 19, 12766-12780 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Y. Fan, “Heat-generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993). [CrossRef]
  2. S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006). [CrossRef]
  3. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007). [CrossRef]
  4. M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2- a new old laser crystal,” Appl. Phys. B 97(2), 327–338 (2009). [CrossRef]
  5. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005). [CrossRef]
  6. D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Vitali, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18(24), 24770–24792 (2010). [CrossRef] [PubMed]
  7. J. C. Manni, J. D. Hybl, D. Rand, D. T. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010). [CrossRef]
  8. A. Bayramian, J. Armstrong, G. Beer, R. Campbell, B. Chai, R. Cross, A. Erlandson, Y. Fei, B. Freitas, R. Kent, J. Menapace, W. Molander, K. Schaffers, C. Siders, S. Sutton, J. Tassano, S. Telford, C. Ebbers, J. Caird, and C. Barty, “High-average-power femto-petawatt laser pumped by the mercury laser facility,” J. Opt. Soc. Am. B 25(7), B57–B61 (2008). [CrossRef]
  9. R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, and T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett. 33(15), 1711–1713 (2008). [CrossRef] [PubMed]
  10. M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B 101(1-2), 93–102 (2010). [CrossRef]
  11. D. Albach, J.-C. Chanteloup, T. Novo, and B. Vincent, “Lucia Yb3+:YAG Diode-Pumped Amplifier Head Characterization and First Activation at 6.6 J / 2 Hz”, 4th EPS-QEOD Europhoton Conference, Aug 29th-Sept 3rd, 2010, Hamburg, Germany.
  12. J.-C. Chanteloup and D. Albach, “Current status on high average power and energy diode pumped solid state lasers,” IEEE Photon. J. 3, 245–248 (2011).
  13. M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys. 2(1), 2–5 (2006). [CrossRef]
  14. A. Bayramian, “LIFE laser system update,” 6th International workshop on High Energy Class Diode Pumped Solid State Laser (HEC-DPSSL 2010), Versailles, France, September 8th-10th 2010.
  15. A. J. Bayramian, R. W. Campbell, C. A. Ebbers, B. L. Freitas, J. Latkowski, W. A. Molander, S. B. Sutton, S. Telford, and J. A. Caird, “A laser technology test facility for laser inertial fusion energy (LIFE),” J. .Phys.: Conf. Ser. 244(3), 032016 (2010). [CrossRef]
  16. http://www.extreme-light-infrastructure.eu/
  17. H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett. 34(21), 3439–3441 (2009). [CrossRef] [PubMed]
  18. J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010). [CrossRef]
  19. J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi KJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser. 244(1), 012010 (2010). [CrossRef]
  20. K. Ertel, S. Banerjee, C. Hernandez-Gomez, P. D. Mason, P. J. Philipps, and J. L. Collier, “Performance Modeling of a 1 kJ DPSSL System,” in Proceedings of Advanced Solid-State Photonics (ASSP, Istanbul, Turkey), Feb. 13–18th), paper HThE3 2011.
  21. L. M. Jiji, Heat Conduction (Springer-Verlag, 2009).
  22. R.J. Corruccini, “Gaseous heat conduction at low pressures and temperatures,” Vacuum7&8, 19–29 (1959). [CrossRef]
  23. I. Yasumoto, “Accommodation coefficients of helium, neon, argon, hydrogen, and deuterium on graphitized carbon,” J. Phys. Chem. 91(16), 4298–4301 (1987). [CrossRef]
  24. B. Raines, “The accommodation coefficient of helium on nickel,” Phys. Rev. 56(7), 691–695 (1939). [CrossRef]
  25. Y. Demirel and S. C. Saxena, “Heat transfer through a low-pressure gas enclosure as a thermal insulator: design considerations,” Int. J. Energy Res. 20(4), 327–338 (1996). [CrossRef]
  26. D. Albach, J.-C. Chanteloup, and G. Touzé, “Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs,” Opt. Express 17(5), 3792–3801 (2009). [CrossRef] [PubMed]
  27. D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb: YAG lasers,” IEEE J. Quantum Electron. 33(5), 861–873 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited