OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12789–12798

Adaptive frequency-domain equalization in digital coherent optical receivers

Md. Saifuddin Faruk and Kazuro Kikuchi  »View Author Affiliations


Optics Express, Vol. 19, Issue 13, pp. 12789-12798 (2011)
http://dx.doi.org/10.1364/OE.19.012789


View Full Text Article

Enhanced HTML    Acrobat PDF (1082 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel frequency-domain adaptive equalizer in digital coherent optical receivers, which can reduce computational complexity of the conventional time-domain adaptive equalizer based on finite-impulse-response (FIR) filters. The proposed equalizer can operate on the input sequence sampled by free-running analog-to-digital converters (ADCs) at the rate of two samples per symbol; therefore, the arbitrary initial sampling phase of ADCs can be adjusted so that the best symbol-spaced sequence is produced. The equalizer can also be configured in the butterfly structure, which enables demultiplexing of polarization tributaries apart from equalization of linear transmission impairments. The performance of the proposed equalization scheme is verified by 40-Gbits/s dual-polarization quadrature phase-shift keying (QPSK) transmission experiments.

© 2011 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2920) Fiber optics and optical communications : Homodyning

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 11, 2011
Revised Manuscript: May 20, 2011
Manuscript Accepted: June 10, 2011
Published: June 17, 2011

Citation
Md. Saifuddin Faruk and Kazuro Kikuchi, "Adaptive frequency-domain equalization in digital coherent optical receivers," Opt. Express 19, 12789-12798 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12789


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 563–570 (2006). [CrossRef]
  2. K. Kikuchi, “Coherent optical communications: historical perspectives and future directions,” in High Spectral Density Optical Communication Technology, M. Nakazawa, K. Kikuchi, and T. Miyazaki, eds (Springer, 2010), Chap. 2.
  3. C. R. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E.-D. Schmidt, T. Wuth, J. Geyer, E. De Man, Khoe Giok-Djan, and H. de Waardt, “Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission,” J. Lightwave Technol. 26(1), 64–72 (2008). [CrossRef]
  4. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008). [CrossRef] [PubMed]
  5. K. Kikuchi, “Clock recovering characteristics of adaptive finite-impulse-response filters in digital coherent optical receivers,” Opt. Express 19(6), 5611–5619 (2011). [CrossRef] [PubMed]
  6. K. Roberts, M. O’Sullivan, Kuang-Tsan Wu, A. Han Sun, D. J. Awadalla, Krause, and C. Laperle, “Performance of dual-polarization QPSK for optical transport system,” J. Lightwave Technol. 27(16), 3546–3559 (2009). [CrossRef]
  7. B. Spinnler, “Equalizer design and complexity for digital coherent receivers,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1180–1192 (2010). [CrossRef]
  8. J. Leibrich and W. Rosenkranz, “Frequency domain equalization with minimum complexity in coherent optical transmission systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper OWV1.
  9. M. Selmi, P. Ciblat, Y. Jaouen, and C. Gosset, “Block versus adaptive MIMO equalization for coherent PolMux QAM transmission system,” in Proceedings of European Conference on Optical Communication (2010), paper Th.9.A.5.
  10. J. C. Geyer, C. R. S. Fludger, T. Duthel, C. Schulien, and B. Schmauss, “Efficient frequency domain chromatic dispersion compensation in a coherent polmux QPSK-receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper OWV5.
  11. R. Kudo, T. Kobayashi, K. Ishihara, Y. Takatori, A. Sano, and Y. Miyamoto, “Coherent optical single carrier transmission using overlap frequency domain equalization for long-haul optical systems,” J. Lightwave Technol. 27(16), 3721–3728 (2009). [CrossRef]
  12. M. Kuschnerov, F. N. Hauske, K. Piyawanno, B. Spinnler, A. Napoli, and B. Lankl, “Adaptive chromatic dispersion equalization for non-dispersion managed coherent systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2009), paper OMT1.
  13. R. Kudo, T. Kobayashi, K. Ishihara, Y. Takatori, A. Sano, E. Yamada, H. Masuda, and Y. Miyamoto, “PMD compensation in optical coherent single carrier transmission using frequency-domain equalization,” Electron. Lett. 45(2), 124–125 (2009). [CrossRef]
  14. K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, and Y. Miyamoto, “Frequency-domain equalization for coherent optical single-carrier transmission systems,” IEICE Trans. Commun. E92-B(12), 3736–3743 (2009). [CrossRef]
  15. J. J. Shynk, “Frequency-domain and multirate adaptive filtering,” IEEE Signal Process. Mag. 9(1), 14–37 (1992). [CrossRef]
  16. S. Haykin, Adaptive Filter Theory, 3rd ed., (Prentice Hall, 2001).
  17. Md. S. Faruk, Y. Mori, C. Zhang, and K. Kikuchi, “Proper polarization demultiplexing in coherent optical receiver using constant modulus algorithm with training mode,” in Proceedings of Optoelectronics and Communication Conference (2010), paper 9B3–3.
  18. D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightwave Technol. 24(1), 12–21 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited