OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12825–12836

Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band

Sebastian Zaske, Andreas Lenhard, and Christoph Becher  »View Author Affiliations

Optics Express, Vol. 19, Issue 13, pp. 12825-12836 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1508 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on single photon frequency downconversion from the red part of the spectrum (738nm) to the telecommunications C-band. By mixing attenuated laser pulses with an average photon number per pulse < 1 with a strong continuous light field at 1403nm in a periodically poled Zn:LiNbO3 ridge waveguide an internal conversion efficiency of ∼ 73% is achieved. We further investigate the noise properties of the process by measuring the output spectrum. Our results indicate that by narrow spectral filtering a quantum interface should be feasible which bridges the wavelength gap between quantum emitters like color centers in diamond emitting in the red part of the spectrum and low-loss fiber-optic telecommunications wavelengths.

© 2011 OSA

OCIS Codes
(190.4223) Nonlinear optics : Nonlinear wave mixing
(270.5565) Quantum optics : Quantum communications

ToC Category:
Nonlinear Optics

Original Manuscript: April 27, 2011
Revised Manuscript: June 3, 2011
Manuscript Accepted: June 3, 2011
Published: June 17, 2011

Sebastian Zaske, Andreas Lenhard, and Christoph Becher, "Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band," Opt. Express 19, 12825-12836 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023–1030 (2008). [CrossRef]
  2. J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68, 2153–2156 (1992). [CrossRef] [PubMed]
  3. M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 μm by means of frequency upconversion,” Opt. Lett. 29, 1449–1451 (2004). [CrossRef] [PubMed]
  4. A. P. VanDevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).
  5. R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29, 1518–1520 (2004). [CrossRef] [PubMed]
  6. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005). [CrossRef] [PubMed]
  7. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London) 437, 116–120 (2005). [CrossRef]
  8. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunicationsband single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010). [CrossRef]
  9. Z. Y. Ou, “Efficient conversion between photons and between photon and atom by stimulated emission,” Phys. Rev. A 78, 023819 (2008). [CrossRef]
  10. M. W. McCutcheon, D. E. Chang, Y. Zhang, M. D. Lukin, and M. Loncar, “Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity,” Opt. Express 17, 22689–22703 (2009). [CrossRef]
  11. Y. Ding and Z. Y. Ou, “Frequency downconversion for a quantum network,” Opt. Lett. 35, 2591–2593 (2010). [CrossRef] [PubMed]
  12. H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82, 013833 (2010). [CrossRef]
  13. J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Efficient down-conversion of single photons for quantum communication,” in Nonlinear Optics: Materials, Fundamentals and Applications , OSA Technical Digest (CD) (Optical Society of America, 2009), paper NTuB1.
  14. J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett. 35, 2804–2806 (2010). [CrossRef] [PubMed]
  15. N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express 18, 22099–22104 (2010). [CrossRef] [PubMed]
  16. A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2010). [CrossRef]
  17. E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy centres in CVD-nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011). [CrossRef]
  18. C. Warschburger, Fachrichtung 7.2 (Experimentalphysik), Universität des Saarlandes, Campus E2.6, 66123 Saarbrücken, Germany, et al. are preparing a manuscript to be called “Analysis on frequency noise properties of a CW optical parametric oscillator using an optical frequency comb.”
  19. I. Aharonovich, S. Castelletto, B. C. Johnson, J. C. McCallum, and S. Prawer, “Engineering chromium-related single photon emitters in single crystal diamonds,” New. J. Phys. 13, 045015 (2011). [CrossRef]
  20. M. Reischle, C. Kessler, W.-M. Schulz, M. Eichfelder, R. Roßbach, M. Jetter, and P. Michler, “Triggered single-photon emission from electrically excited quantum dots in the red spectral range,” Appl. Phys. Lett. 97, 143513 (2010). [CrossRef]
  21. Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39, 609–611 (2003). [CrossRef]
  22. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, 1974).
  23. U. T. Schwarz and M. Maier, “Asymmetric Raman lines caused by an anharmonic lattice potential in lithium niobate,” Phys. Rev. B 55, 11041–11044 (1997). [CrossRef]
  24. Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids 60, 819–825 (1999). [CrossRef]
  25. N. V. Sidorov, A. A. Yanichev, P. G. Chufyrev, M. N. Palatnikov, and B. N. Mavrin, “Raman spectra of photorefractive lithium niobate single crystals,” J. Appl. Spectrosc. 77, 110–114 (2010). [CrossRef]
  26. M. Malyj and J. E. Griffiths, “Stokes/anti-stokes Raman vibrational temperatures: reference materials, standard lamps, and spectrophotometric calibrations,” Appl. Spectrosc. 37, 315–333 (1983). [CrossRef]
  27. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  28. C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Towards a picosecond transform-limited nitrogen-vacancy based single photon source,” Opt. Express 16, 6240–6250 (2008). [CrossRef] [PubMed]
  29. A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011). [CrossRef]
  30. G. Ribordy, N. Gisin, O. Guinnard, D. Stucki, M. Wegmuller, and H. Zbinden, “Photon counting at telecom wavelengths with commercial InGaAs/InP avalanche photodiodes: current performance,” J. Mod. Opt. 51, 1381–1398 (2004).
  31. F. R. Nash, G. D. Boyd, M. Sargent, and P. M. Bridenbaugh, “Effect of optical inhomogeneities on phase matching in nonlinear crystals,” J. Appl. Phys. 41, 2564–2576 (1970). [CrossRef]
  32. H. Jiang, G. Li, and X. Xu, “Highly efficient single-pass second harmonic generation in a periodically poled MgO:LiNbO3 waveguide pumped by a fiber laser at 1111.6 nm,” Opt. Express 17, 16073–16080 (2009). [CrossRef] [PubMed]
  33. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009). [CrossRef] [PubMed]
  34. K.-D. F. Büchter, H. Herrmann, C. Langrock, M. M. Fejer, and W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Lett. 34, 470–472 (2009). [CrossRef] [PubMed]
  35. M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253–255 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited