OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12843–12854

Improvement of absorption and scattering discrimination by selection of sensitive points on temporal profile in diffuse optical tomography

Farouk Nouizi, Murielle Torregrossa, Renee Chabrier, and Patrick Poulet  »View Author Affiliations


Optics Express, Vol. 19, Issue 13, pp. 12843-12854 (2011)
http://dx.doi.org/10.1364/OE.19.012843


View Full Text Article

Enhanced HTML    Acrobat PDF (1233 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new method allowing the reconstruction of 3D time-domain diffuse optical tomography images, based on the time-dependent diffusion equation and an iterative algorithm (ART) using specific points on the temporal profiles. The first advantage of our method versus the full time-resolved scheme consists in considerably reducing the inverse problem resolution time. Secondly, in the presence of scattering heterogeneities, our method provides images of better quality comparatively to classical methods using full-time data or the first moments of the profiles.

© 2011 OSA

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6920) Medical optics and biotechnology : Time-resolved imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: May 9, 2011
Revised Manuscript: June 3, 2011
Manuscript Accepted: June 7, 2011
Published: June 17, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Farouk Nouizi, Murielle Torregrossa, Renee Chabrier, and Patrick Poulet, "Improvement of absorption and scattering discrimination by selection of sensitive points on temporal profile in diffuse optical tomography," Opt. Express 19, 12843-12854 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12843


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008). [CrossRef] [PubMed]
  2. J. C. Hebden, “Advances in optical imaging of the newborn infant brain,” Psychophysiology 40(4), 501–510 (2003). [CrossRef] [PubMed]
  3. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005). [CrossRef] [PubMed]
  4. W. G. Egan and T. W. Hilgeman, Optical Properties of Inhomogeneous Materials (Academic, 1979).
  5. A. G. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34–40 (1995). [CrossRef]
  6. X. Intes and B. Chance, “Non-PET functional imaging techniques: optical,” Radiol. Clin. North Am. 43(1), 221–234 (2005). [CrossRef] [PubMed]
  7. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977). [CrossRef] [PubMed]
  8. Y. Lin, G. Lech, S. Nioka, X. Intes, and B. Chance, “Noninvasive, low-noise, fast imaging of blood volume and deoxygenation changes in muscles using light-emitting diode continuous-wave imager,” Rev. Sci. Instrum. 73(8), 3065–3074 (2002). [CrossRef]
  9. S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. Paasschens, J. B. Melissen, and N. A. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36(1), 180–213 (1997). [CrossRef] [PubMed]
  10. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13(2), 253–266 (1996). [CrossRef]
  11. M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imaging Vis. 3(3), 263–283 (1993). [CrossRef]
  12. H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70(9), 3595–3602 (1999). [CrossRef]
  13. S. R. Arridge, M. Schweiger, and D. T. Delpy, “Iterative reconstruction of near-infrared absorption images,” Proc. SPIE 1767, 372–383 (1992). [CrossRef]
  14. M. Schweiger and S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44(7), 1699–1717 (1999). [CrossRef] [PubMed]
  15. F. Gao, P. Poulet, and Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography,” Appl. Opt. 39(31), 5898–5910 (2000). [CrossRef]
  16. E. M. C. Hillman, J. C. Hebden, F. E. R. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71(9), 3415–3427 (2000). [CrossRef]
  17. M. Torregrossa, C. V. Zint, and P. Poulet, “Effects of prior MRI information on image reconstruction in diffuse optical tomography,” Proc. SPIE 5143, 29–40 (2003). [CrossRef]
  18. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009). [CrossRef]
  19. R. L. Barbour, H. L. Graber, Y. Wang, J. H. Chang, and R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” Proc. SPIE IS11, 87–120 (1993).
  20. A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18(3), 262–271 (1999). [CrossRef] [PubMed]
  21. R. Model, M. Orlt, M. Walzel, and R. Hünlich, “Reconstruction algorithm for near-infrared imaging in turbid media by means of timedomain data,” J. Opt. Soc. Am. A 14(1), 313–323 (1997). [CrossRef]
  22. F. Gao, H. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41(4), 778–791 (2002). [CrossRef] [PubMed]
  23. V. Venugopal, J. Chen, and X. Intes, “Development of an optical imaging platform for functional imaging of small animals using widefield excitation,” Biomed. Opt. Express 1(1), 143–156 (2010). [CrossRef]
  24. F. Nouizi, R. Chabrier, M. Torregrossa, and P. Poulet, “3D modeling for solving forward model of no-contact fluorescence diffuse optical tomography method,” Proc. SPIE 7369, 73690C (2009). [CrossRef]
  25. S. R. Arridge, “Photon-measurement density functions. Part I: analytical forms,” Appl. Opt. 34(31), 7395–7409 (1995). [CrossRef] [PubMed]
  26. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999). [CrossRef]
  27. F. Gao, H. Zhao, L. Zhang, Y. Tanikawa, A. Marjono, and Y. Yamada, “A self-normalized, full time-resolved method for fluorescence diffuse optical tomography,” Opt. Express 16(17), 13104–13121 (2008). [CrossRef] [PubMed]
  28. W. Becker, The bh TCSPC Handbook, 3rd ed. (Becker & Hickl GmbH, 2008).
  29. G. T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography (Academic, 1980).
  30. A. H. Gandjbakhche, R. F. Bonner, R. Nossal, and G. H. Weiss, “Absorptivity contrast in transillumination imaging of tissue abnormalities,” Appl. Opt. 35(10), 1767–1774 (1996). [CrossRef] [PubMed]
  31. A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, and R. Nossal, “Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments,” Appl. Opt. 37(10), 1973–1981 (1998). [CrossRef]
  32. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Imaging of optical inhomogeneities in highly diffusive media: Discrimination between scattering and absorption contributions,” Appl. Phys. Lett. 69(27), 4162–4164 (1996). [CrossRef]
  33. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Imaging with diffusing light: an experimental study of the effect of background optical properties,” Appl. Opt. 37(16), 3564–3573 (1998). [CrossRef]
  34. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989). [CrossRef] [PubMed]
  35. V. Venugopal, J. Chen, F. Lesage, and X. Intes, “Full-field time-resolved fluorescence tomography of small animals,” Opt. Lett. 35(19), 3189–3191 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited