OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13047–13055

Design of waveguide grating with ultrafast tunable index contrast

Sun Do Lim, In-Kag Hwang, Kwanil Lee, Byoung Yoon Kim, and Sang Bae Lee  »View Author Affiliations

Optics Express, Vol. 19, Issue 14, pp. 13047-13055 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1339 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A long-period waveguide grating (LPWG) with a tunable index contrast is proposed. The design features a simple configuration that consists of a two-mode waveguide formed on periodically poled lithium niobate with an angle with respect to its domain wall and a traveling-wave electrode. In the design, the electrical traveling wave introduces a periodic change in the refractive index of waveguide, which functions as a long-period waveguide grating that couples between symmetric and anti-symmetric core modes. The index contrast of grating can be controlled by the traveling-wave intensity. For application to ultrafast device, structural parameters satisfying velocity and impedance matching conditions are numerically calculated.

© 2011 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(160.3730) Materials : Lithium niobate
(230.2090) Optical devices : Electro-optical devices
(230.7020) Optical devices : Traveling-wave devices
(250.7360) Optoelectronics : Waveguide modulators

ToC Category:
Optical Devices

Original Manuscript: January 24, 2011
Revised Manuscript: June 11, 2011
Manuscript Accepted: June 14, 2011
Published: June 22, 2011

Sun Do Lim, In-Kag Hwang, Kwanil Lee, Byoung Yoon Kim, and Sang Bae Lee, "Design of waveguide grating with ultrafast tunable index contrast," Opt. Express 19, 13047-13055 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi, and K. Oh, “Electrically controllable long-period liquid crystal fiber gratings,” IEEE Photon. Technol. Lett. 12(5), 519–521 (2000). [CrossRef]
  2. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996). [CrossRef]
  3. Y. W. Koh, S. H. Yun, and B. Y. Kim, “Strain effects on two-mode fiber gratings,” Opt. Lett. 18(7), 497–499 (1993). [CrossRef] [PubMed]
  4. C. Zhao, L. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fiber and its application as a temperature-insensitive strain sensor,” J. Lightwave Technol. 26(2), 220–227 (2008). [CrossRef]
  5. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993). [CrossRef]
  6. Y. L. Lee, C. Jung, Y. C. Noh, I. Choi, D. K. Ko, J. Lee, H. Y. Lee, and H. Suche, “Wavelength selective single and dual-channel dropping in a periodically poled Ti:LiNbO3 waveguide,” Opt. Express 12(4), 701–707 (2004). [CrossRef] [PubMed]
  7. K. Kubota, J. Noda, and O. Mikami, “Traveling wave optical modulator using a directional coupler LiNbO3 waveguide,” IEEE J. Quantum Electron. 16(7), 754–760 (1980). [CrossRef]
  8. K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol. 16(4), 615–619 (1998). [CrossRef]
  9. H. G. Park, S. Y. Huang, and B. Y. Kim, “All optical intermodal switch using periodic coupling in a two-mode waveguide,” Opt. Lett. 14(16), 877–878 (1989). [CrossRef] [PubMed]
  10. J. N. Blake, B. Y. Kim, and H. J. Shaw, “Fiber-optic modal coupler using periodic microbending,” Opt. Lett. 11(3), 177–179 (1986). [CrossRef] [PubMed]
  11. B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, “All-fiber acousto-optic frequency shifter,” Opt. Lett. 11(6), 389–391 (1986). [CrossRef] [PubMed]
  12. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985). [CrossRef]
  13. E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000). [CrossRef]
  14. R.-C. Twu, C.-Y. Chang, and W.-S. Wang, “A Zn-diffused Mach–Zehnder modulator on lithium niobate at 1.55-μm wavelength,” Microw. Opt. Technol. Lett. 43(2), 142–144 (2004). [CrossRef]
  15. W. K. Burns, M. M. Howerton, R. P. Moeller, R. Krähenbühl, R. W. McElhanon, and A. S. Greenblatt, “Low drive voltage, broad-band LiNbO3 modulators with and without etched ridges,” J. Lightwave Technol. 17(12), 2551–2555 (1999). [CrossRef]
  16. K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fiber using externally written gratings,” Electron. Lett. 26(16), 1270–1272 (1990). [CrossRef]
  17. D. Őstling and H. E. Engan, “Narrow-band acousto-optic tunable filtering in a two-mode fiber,” Opt. Lett. 20(11), 1247–1249 (1995). [CrossRef] [PubMed]
  18. H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, “All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers,” J. Lightwave Technol. 20(10), 1864–1868 (2002). [CrossRef]
  19. K. Kawano, T. Kitoh, O. Mitomi, T. Nozawa, and H. Jumonji, “A wide-band and low-driving-power phase modulator employing a Ti:LiNbO3 optical waveguide at 1.5 μm wavelength,” IEEE Photon. Technol. Lett. 1(2), 33–34 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited