OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13081–13088

Parametric instability of an integrated micromechanical oscillator by means of active optomechanical feedback

J. Roels, B. Maes, W. Bogaerts, R. Baets, and D. Van Thourhout  »View Author Affiliations


Optics Express, Vol. 19, Issue 14, pp. 13081-13088 (2011)
http://dx.doi.org/10.1364/OE.19.013081


View Full Text Article

Enhanced HTML    Acrobat PDF (3529 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Mass sensing and time keeping applications require high frequency integrated micromechanical oscillators. To overcome the increasing mechanical stiffness of these structures sensitive optical vibration detection and efficient actuation is required. Therefore we have implemented an active feedback system, where the feedback signal is provided by the optical gradient force that is present between nanophotonic waveguides on a silicon-on-insulator chip. We found that access to the parametric instability regime can be easily controlled by tuning the wavelength.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Integrated Optics

History
Original Manuscript: February 15, 2011
Revised Manuscript: April 10, 2011
Manuscript Accepted: April 29, 2011
Published: June 22, 2011

Citation
J. Roels, B. Maes, W. Bogaerts, R. Baets, and D. Van Thourhout, "Parametric instability of an integrated micromechanical oscillator by means of active optomechanical feedback," Opt. Express 19, 13081-13088 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-13081


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008). [CrossRef] [PubMed]
  2. D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006). [CrossRef] [PubMed]
  3. A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010). [CrossRef] [PubMed]
  4. M. Hossein and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 276–287 (2010). [CrossRef]
  5. A. Vidic, D. Then, and C. Ziegler, “A new cantilever system for gas and liquid sensing,” Ultramicroscopy 97, 407–416 (2003). [CrossRef] [PubMed]
  6. J. Tamayo, A. D. L. Humphris, A. M. Malloy, and M. J. Miles, “Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor,” Ultramicroscopy 86, 167–173 (2001). [CrossRef] [PubMed]
  7. D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010). [CrossRef]
  8. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008). [CrossRef] [PubMed]
  9. J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009). [CrossRef] [PubMed]
  10. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009). [CrossRef]
  11. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, J. Erich, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005). [CrossRef] [PubMed]
  12. A. Mizrahi and L. Schachter, “Mirror manipulation by attractive and repulsive forces of guided waves,” Opt. Express 13, 9804–9811 (2005). [CrossRef] [PubMed]
  13. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009). [CrossRef]
  14. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004). [CrossRef] [PubMed]
  15. R. Kubo, “The fluctuation dissipation theorem,” Rep. Prog. Phys. 29, 255–284 (1966). [CrossRef]
  16. I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007). [CrossRef]
  17. H. Nyquist, “Thermal agitation of electric charge in conductors,” Phys. Rev. 32(1), 110–113 (1928). [CrossRef]
  18. G. P. Agrawal, Fiber Optic Communication System (Wiley, 2002), Chap. 6. [CrossRef]
  19. E. Säckinger, Broadband Circuits for Optical Fiber Communication (Wiley, 2005), Chap. 3. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited