OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13140–13149

Design of wavelength selective concentrator for micro PV/TPV systems using evolutionary algorithm

Noboru Yamada and Toshikazu Ijiro  »View Author Affiliations


Optics Express, Vol. 19, Issue 14, pp. 13140-13149 (2011)
http://dx.doi.org/10.1364/OE.19.013140


View Full Text Article

Enhanced HTML    Acrobat PDF (1551 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper describes the results of exploring photonic structures that behave as wavelength selective concentrators (WSCs) of solar/thermal radiation. An evolutionary algorithm was combined with the finite-difference time-domain method (EA-FDTD) to determine the optimum photonic structure that can concentrate a designated wavelength range of beam solar radiation and diffusive thermal radiation in such a manner that the range matches the photosensitivity of micro photovoltaic and thermophotovoltaic cells. Our EA-FDTD method successfully generated a photonic structure capable of performing wavelength selective concentration close to the theoretical limit. Our WSC design concept can be successfully extended to three-dimensional structures to further enhance efficiency.

© 2011 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(220.1770) Optical design and fabrication : Concentrators
(350.5610) Other areas of optics : Radiation
(350.6050) Other areas of optics : Solar energy
(220.4298) Optical design and fabrication : Nonimaging optics
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Solar Energy

History
Original Manuscript: April 19, 2011
Revised Manuscript: June 13, 2011
Manuscript Accepted: June 15, 2011
Published: June 22, 2011

Citation
Noboru Yamada and Toshikazu Ijiro, "Design of wavelength selective concentrator for micro PV/TPV systems using evolutionary algorithm," Opt. Express 19, 13140-13149 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-13140


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. K. Chou, W. M. Yang, K. J. Chua, J. Li, and K. L. Zhang, “Development of micro power generators - A review,” Appl. Energy 88(1), 1–16 (2011). [CrossRef]
  2. B. D. Yuhas and P. Yang, “Nanowire-based all-oxide solar cells,” J. Am. Chem. Soc. 131(10), 3756–3761 (2009). [CrossRef] [PubMed]
  3. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010). [CrossRef] [PubMed]
  4. A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008). [CrossRef] [PubMed]
  5. K. Hanamura and K. Mori, “Nano-gap TPV generation of electricity through evanescent wave in near-field above emitter surface,” in Proceedings of 7th world TPV Conference (Madrid, 2007), pp. 291–296.
  6. J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Micro systems enabled photovoltaics: 14.9% efficient 14 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011). [CrossRef]
  7. T. Matsumoto, K. S. Eom, and T. Baba, “Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate,” Opt. Lett. 31(18), 2786–2788 (2006). [CrossRef] [PubMed]
  8. G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Melique, O. Vanbesien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97(7), 071119–071113 (2010). [CrossRef]
  9. J. Sun, Y. F. Shen, J. Chen, L. G. Wang, L. L. Sun, J. Wang, K. Han, and G. Tang, “Imaging properties of a two-dimensional photonic crystal with rectangular air holes embedded in a silicon slab,” Photon. Nanostructures 8(3), 163–171 (2010). [CrossRef]
  10. S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010). [CrossRef] [PubMed]
  11. D. Kirikae, Y. Suzuki, and N. Kasagi, “Emission spectral control using metal-coated silicon,” in Proceedings of Power MEMS (Washington, 2009), pp. 161–164.
  12. B. Gesemann, S. L. Schweizer, and R. B. Wehrspohn, “Thermal emission properties of 2D and 3D silicon photonic crystals,” Photon. Nanostructures 8(2), 107–111 (2010). [CrossRef]
  13. H. Katsunori and K. Yuki, “Spectral control of thermal radiation using rectangular micro-cavities on emitter-surface for thermophotovoltaic generation of electricity,” J. Therm. Sci. Tech. 3(1), 33–44 (2008). [CrossRef]
  14. T. Matsumoto and M. Tomita, “Modified blackbody radiation spectrum of a selective emitter with application to incandescent light source design,” Opt. Express 18(S2Suppl 2), A192–A200 (2010). [CrossRef] [PubMed]
  15. F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97(3), 033529–033527 (2005). [CrossRef]
  16. T. Shirakawa, K. L. Ishikawa, S. Suzuki, Y. Yamada, and H. Takahashi, “Design of binary diffractive microlenses with subwavelength structures using the genetic algorithm,” Opt. Express 18(8), 8383–8391 (2010). [CrossRef] [PubMed]
  17. J. Marqués-Hueso, L. Sanchis, B. Cluzel, F. de Fornel, and J. P. Martinez-Pastor, “Genetic algorithm designed silicon integrated photonic lens operating at 1550 nm,” Appl. Phys. Lett. 97(7), 071115–071113 (2010). [CrossRef]
  18. M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008). [CrossRef] [PubMed]
  19. N. Yamada and T. Nishikawa, “Evolutionary algorithm for optimization of nonimaging Fresnel lens geometry,” Opt. Express 18(S2Suppl 2), A126–A132 (2010). [CrossRef] [PubMed]
  20. A. Taflove and S. C. Hagness, Computional Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005), Chap. 3.
  21. C. Honsberg and S. Bowden, “PVCDROM, Appendices: Standard Solar Spectra,” http://www.pveducation.org/pvcdrom/appendicies/standard-solar-spectra .
  22. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994). [CrossRef]
  23. M. Born and E. Wolf, Principles Optics (Cambridge University Press, 1999), Chap. 8.
  24. F. Hudelist, A. J. Waddie, and M. R. Taghizadeh, “Design of all-glass multilayer phase gratings for cylindrical microlenses,” Opt. Lett. 34(11), 1681–1683 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (3138 KB)      QuickTime
» Media 2: AVI (2221 KB)      QuickTime
» Media 3: AVI (3894 KB)      QuickTime
» Media 4: AVI (3713 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited