OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13185–13191

Spectroscopic analysis and efficient diode-pumped 1.9 μm Tm3+-doped β′-Gd2(MoO4)3 crystal laser

Jianfeng Tang, Yujin Chen, Yanfu Lin, Xinghong Gong, Jianhua Huang, Zundu Luo, and Yidong Huang  »View Author Affiliations


Optics Express, Vol. 19, Issue 14, pp. 13185-13191 (2011)
http://dx.doi.org/10.1364/OE.19.013185


View Full Text Article

Enhanced HTML    Acrobat PDF (1001 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Tm3+-doped β′-Gd2(MoO4)3 single crystal was grown by the Czochralski method. Spectroscopic analysis was carried out along different polarizations. End-pumped by a quasi-cw diode laser at 795 nm in a plano-concave cavity, an average laser output power of 58 mW around 1.9 μm was achieved in a 0.93-mm-thick crystal when the output coupler transmission was 7.1%. The absorbed pump threshold was 8 mW and the slope efficiency of the laser was 57%. This crystal has smooth and broad gain curve around 1.9 μm, which shows that it is also a potential gain medium for tunable and short pulse lasers.

© 2011 OSA

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 5, 2011
Revised Manuscript: June 3, 2011
Manuscript Accepted: June 4, 2011
Published: June 22, 2011

Citation
Jianfeng Tang, Yujin Chen, Yanfu Lin, Xinghong Gong, Jianhua Huang, Zundu Luo, and Yidong Huang, "Spectroscopic analysis and efficient diode-pumped 1.9 μm Tm3+-doped β′-Gd2(MoO4)3 crystal laser," Opt. Express 19, 13185-13191 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-13185


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 microm,” J. Endourol. 19(1), 25–31 (2005). [CrossRef] [PubMed]
  2. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, ““Coherent laser-radar at 2 μm using solid-state lasers,” IEEE,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993). [CrossRef]
  3. B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009). [CrossRef]
  4. F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33(2-4), 61–109 (2009). [CrossRef]
  5. H. J. Borchardt and P. E. Bierstedt, “Gd2(MoO4)3: a ferroelectric laser host,” Appl. Phys. Lett. 8(2), 50–52 (1966). [CrossRef]
  6. E. T. Keve, S. C. Abrahams, and J. L. Bernstein, “Ferroelectric ferroelastic paramagnetic beta-Gd2(MoO4)3 crystal structure of transition-metal molybdates and tungstates. VI,” J. Chem. Phys. 54(7), 3185–3194 (1971). [CrossRef]
  7. A. A. Kaminskii, A. V. Butashin, H. J. Eichler, D. Grebe, R. Macdonald, K. Ueda, H. Nishioka, W. Odajima, M. Tateno, J. Song, M. Musha, S. N. Bagaev, and A. A. Pavlyuk, “Orthorhombic ferroelectric and ferroelastic Gd2(MoO4)3 crystal – a new many-purposed nonlinear and optical material: efficient multiple stimulated Raman scattering and CW and tunable second harmonic generation,” Opt. Mater. 7(3), 59–73 (1997). [CrossRef]
  8. H. Nishioka, W. Odajima, M. Tateno, K. Ueda, A. A. Kaminskii, A. V. Butashin, S. N. Bagayev, and A. A. Pavlyuk, “Femtosecond continuously tunable second harmonic generation over the entire-visible range in orthorhombic acentric Gd2(MoO4)3 crystals,” Appl. Phys. Lett. 70(11), 1366–1368 (1997). [CrossRef]
  9. S. I. Kim, J. Kim, S. C. Kim, S. I. Yun, and T. Y. Kwon, “Second harmonic generation in the Gd2(MoO4)3 crystal grown by the Czochralski method,” Mater. Lett. 25(5-6), 195–198 (1995). [CrossRef]
  10. A. A. Kaminskii, H. J. Eichler, D. Grebe, R. Macdonald, S. N. Bagaev, A. A. Pavlyuk, and F. A. Kuznetsov, “High-efficient stimulated-Raman scattering in ferroelectric and ferroelastic orthorhombic Gd2(MoO4)3 crystals,” Phys. Status Solidi 153(1), 281–285 (1996) (a). [CrossRef]
  11. Y. Q. Zou, X. Y. Chen, D. Y. Tang, Z. D. Luo, and W. Q. Yang, “Investigation of the spectroscopic properties of acentric orthorhombic Nd3+:Gd2(MoO4)3 crystals,” Opt. Commun. 167(1-6), 99–104 (1999). [CrossRef]
  12. D. Jaque, J. Findensein, E. Montoya, J. Capmany, A. A. Kaminskii, H. J. Eichler, and J. G. Solé, “Spectroscopic and laser gain properties of the Nd3+:β'-Gd2(MoO4)3 non-linear crystal,” J. Phys. Condens. Matter 12(46), 9699–9714 (2000). [CrossRef]
  13. Z. Lin, X. Han, and C. Zaldo, “Solid state reaction synthesis and optical spectroscopy of ferroelectric (Gd1-xLnx)2(MoO4)3; with Ln=Yb or Tm,” J. Alloy. Comp. 492(1-2), 77–82 (2010). [CrossRef]
  14. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964). [CrossRef]
  15. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992). [CrossRef]
  16. K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73(7), 3149–3152 (1993). [CrossRef]
  17. J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. J. Valle, M. Galan, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23(12), 2494–2502 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited