OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13209–13217

Localized surface plasmon enhanced cathodoluminescence from Eu3+-doped phosphor near the nanoscaled silver particles

Seong Min Lee, Kyung Cheol Choi, Dong Hyuk Kim, and Duk Young Jeon  »View Author Affiliations


Optics Express, Vol. 19, Issue 14, pp. 13209-13217 (2011)
http://dx.doi.org/10.1364/OE.19.013209


View Full Text Article

Enhanced HTML    Acrobat PDF (1202 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We elucidate that the luminescence from Eu3+-doped phosphor excited by the electron collision can be modified on location near the metallic nanoparticles. The Eu3+-doped phosphor was fabricated on the nanoscaled Ag particles ranging of 5 nm to 30 nm diameter. As a result of the cathodoluminescence measurements, the phosphor films on the Ag particles showed up to twofold more than that of an isolated phosphor film. Enhanced cathodoluminescence originated from the resonant coupling between the localized surface plasmon of Ag nanoparticles and radiating energy of the phosphor. Cathodoluminescent phosphor for high luminous display devices can be addressed by locating phosphor near the surface of metallic nanoparticles.

© 2011 OSA

OCIS Codes
(250.1500) Optoelectronics : Cathodoluminescence
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optoelectronics

History
Original Manuscript: April 19, 2011
Revised Manuscript: June 13, 2011
Manuscript Accepted: June 14, 2011
Published: June 23, 2011

Citation
Seong Min Lee, Kyung Cheol Choi, Dong Hyuk Kim, and Duk Young Jeon, "Localized surface plasmon enhanced cathodoluminescence from Eu3+-doped phosphor near the nanoscaled silver particles," Opt. Express 19, 13209-13217 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-13209


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. M. Lee and K. C. Choi, “Enhanced emission from BaMgAl10O17:Eu2+ by localized surface plasmon resonance of silver particles,” Opt. Express 18(12), 12144–12152 (2010). [CrossRef] [PubMed]
  2. J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1(1), 5–33 (2006). [CrossRef] [PubMed]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  4. B. Moine and G. Bizarri, “Rare-earth doped phosphors: oldies or goldies?” Mater. Sci. Eng. B 105(1-3), 2–7 (2003). [CrossRef]
  5. T. Hayakawa, K. Furuhashi, and M. Nogami, “Enhancement of 5D0-7FJ emissions of Eu3+ ions in the vicinity of polymer-protected Au nanoparticles in sol−gel-derived B2O3−SiO2 glass,” J. Phys. Chem. B 108(31), 11301–11307 (2004). [CrossRef]
  6. R. Reisfeld, M. Pietraszkiewicz, T. Saraidarov, and V. Levchenko, “Luminescence intensification of lanthanide complexes by silver nanoparticles incorporated in sol-gel matrix,” J. Rare Earths 27(4), 544–549 (2009). [CrossRef]
  7. J. Zhu, “Enhanced fluorescence from Dy3+ owing to surface plasmon resonance of Au colloid nanoparticles,” Mater. Lett. 59(11), 1413–1416 (2005). [CrossRef]
  8. X. Fang, H. Song, L. Xie, Q. Liu, H. Zhang, X. Bai, B. Dong, Y. Wang, and W. Han, “Origin of luminescence enhancement and quenching of europium complex in solution phase containing Ag nanoparticles,” J. Chem. Phys. 131(5), 054506 (2009). [CrossRef] [PubMed]
  9. Y. Wang, J. Zhou, and T. Wang, “Enhanced luminescence from europium complex owing to surface plasmon resonance of silver nanoparticles,” Mater. Lett. 62(12-13), 1937–1940 (2008). [CrossRef]
  10. K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009). [CrossRef]
  11. K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009). [CrossRef] [PubMed]
  12. W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(22), 3771–3782 (2007). [CrossRef]
  13. K. H. Cho, S. I. Ahn, S. M. Lee, C. S. Choi, and K. C. Choi, “Surface plasmonic controllable enhanced emission from the intrachain and interchain excitons of a conjugated polymer,” Appl. Phys. Lett. 97(19), 193306 (2010). [CrossRef]
  14. J. H. Kang, M. Nazarov, W. B. Im, J. Y. Kim, and D. Y. Jeon, “Characterization of nano-size YVO4:Eu and (Y,Gd)VO4:Eu phosphors by low voltage cathodo- and photoluminescence,” J. Vac. Sci. Technol. B 23(2), 843–848 (2005). [CrossRef]
  15. C. C. Wu, K. B. Chen, C. S. Lee, T. M. Chen, and B. M. Cheng, “Synthesis and VUV photoluminescence characterization of (Y, Gd)(V, P)O4:Eu3+ as a potential red-emitting PDP phosphor,” Chem. Mater. 19(13), 3278–3285 (2007). [CrossRef]
  16. A. K. Levine and F. C. Palilla, “A new, highly efficient red-emitting cathodoluminescent phosphor (YVO4:Eu) for color television,” Appl. Phys. Lett. 5(6), 118–120 (1964). [CrossRef]
  17. T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett. 74(11), 1513–1515 (1999). [CrossRef]
  18. V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998). [CrossRef]
  19. K. Matsubara, H. Tampo, H. Shibata, A. Yamada, P. Fons, K. Iwata, and S. Niki, “Band-gap modified Al-doped Zn1−xMgxO transparent conducting films deposited by pulsed laser deposition,” Appl. Phys. Lett. 85(8), 1374–1376 (2004). [CrossRef]
  20. T. Hayakawa, S. Tamil Selvan, and M. Nogami, “Enhanced fluorescence from Eu3+ owing to surface plasma oscillation of silver particles in glass,” J. Non-Cryst. Solids 259(1-3), 16–22 (1999). [CrossRef]
  21. M. S. Elmanharawy, A. H. Eid, and A. A. Kader, “Spectra of europium-doped yttrium oxide and yttrium vanadate phosphors,” Czech. J. Phys. 28(10), 1164–1173 (1978). [CrossRef]
  22. N. Noginova, Y. Barnakov, H. Li, and M. A. Noginov, “Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film,” Opt. Express 17(13), 10767–10772 (2009). [CrossRef] [PubMed]
  23. B. J. Lawrie, R. F. Haglund, and R. Mu, “Enhancement of ZnO photoluminescence by localized and propagating surface plasmons,” Opt. Express 17(4), 2565–2572 (2009). [CrossRef] [PubMed]
  24. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi C 2(7), 2841–2844 (2005). [CrossRef]
  25. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited