OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13225–13244

A surface-emitting 3D metal-nanocavity laser: proposal and theory

Chien-Yao Lu and Shun Lien Chuang  »View Author Affiliations

Optics Express, Vol. 19, Issue 14, pp. 13225-13244 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1788 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel three-dimensional (3D) metal-nanocavity (or nano-coin) semiconductor laser suitable for electrical injection is proposed and analyzed. Our design uses metals as both the cavity sidewall and the top/bottom reflectors (i. e., a fully metal encapsulated nanolaser) and maintains the surface-emitting nature. As a result of the large permittivity contrast between the dielectric and metal, the optical energy can be well-confined inside the metal nanocavity. With a proper design and the choice of the HE111 mode, which has the best top surface radiation pattern, a laser with a physical size smaller than 0.01λ03 is achievable at 1.55 μm wavelength with a reasonable semiconductor gain at room temperature. We provide a detailed theoretical model starting from the waveguide analysis to full 3D structure simulations by taking into account both geometry and metal dispersion. We show a systematic procedure for analyzing this class of 3D metal-cavity (or nano-coin) lasers with discussions on the optimization of the performance such as light output power, threshold reduction, and output beam shaping.

© 2011 OSA

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(230.7370) Optical devices : Waveguides
(260.3910) Physical optics : Metal optics
(140.3945) Lasers and laser optics : Microcavities
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 18, 2011
Revised Manuscript: June 9, 2011
Manuscript Accepted: June 11, 2011
Published: June 23, 2011

Chien-Yao Lu and Shun Lien Chuang, "A surface-emitting 3D metal-nanocavity laser: proposal and theory," Opt. Express 19, 13225-13244 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004). [CrossRef] [PubMed]
  2. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007). [CrossRef] [PubMed]
  3. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011). [CrossRef] [PubMed]
  4. C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface emitting microlaser at room temperature,” Appl. Phys. Lett. 96(25), 251101 (2010). [CrossRef]
  5. C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, U. W. Pohl, and D. Bimberg, “CW substrate-free metal-cavity surface microemitters at 300 K,” Semicond. Sci. Technol. 26(1), 014012 (2011). [CrossRef]
  6. S. W. Chang, C. Y. Lu, S. L. Chuang, T. D. Germann, U. W. Pohl, and D. Bimberg, “Theory of metal-cavity surface-emitting microlasers and comparison with experiment,” IEEE J. Sel. Top. Quantum Electron. (in press).
  7. C. Y. Lu, S. L. Chuang, A. Mutig, and D. Bimberg, “Metal-cavity surface-emitting microlasers with hybrid metal-DBR reflectors,” Opt. Lett. (in press). [PubMed]
  8. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18(9), 8790–8799 (2010). [CrossRef] [PubMed]
  9. S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010). [CrossRef] [PubMed]
  10. J. Huang, S. H. Kim, and A. Scherer, “Design of a surface-emitting, subwavelength metal-clad disk laser in the visible spectrum,” Opt. Express 18(19), 19581–19591 (2010). [CrossRef] [PubMed]
  11. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010). [CrossRef]
  12. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007). [CrossRef]
  13. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009). [CrossRef] [PubMed]
  14. C. Manolatou and F. Rana, “Subwavelength nanopatch cavities for semiconductor plasmon lasers,” IEEE J. Quantum Electron. 44(5), 435–447 (2008). [CrossRef]
  15. J. L. Jewell, N. A. Olsson, A. Scherer, S. L. McCall, J. P. Harbison, L. T. Florez, and Y. H. Lee, “Surface-emitting microlasers for photonic switching and interchip connections,” Opt. Eng. 29(3), 210–214 (1990). [CrossRef]
  16. W. H. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44 Gb/s VCSEL for optical interconnects,” Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPC5.
  17. R. Safaisini, J. R. Joseph, and K. L. Lear, “Scalable high-CW-power high-speed 980-nm VCSEL arrays,” IEEE J. Quantum Electron. 46(11), 1590–1596 (2010). [CrossRef]
  18. M. Motoyoshi, “Through silicon via (TSV),” Proc. IEEE 97(1), 43–48 (2009). [CrossRef]
  19. J. A. Kong, Electromagnetic Wave Theory (EWM, 2008).
  20. L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 4094–4106 (1994). [CrossRef] [PubMed]
  21. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  22. S. Adachi, “Refractive indices of III-V compounds: key properties of InGaAsP relevant to device design,” J. Appl. Phys. 53(8), 5863–5869 (1982). [CrossRef]
  23. S. W. Chang, T. R. Lin, and S. L. Chuang, “Theory of plasmonic fabry-perot nanolasers,” Opt. Express 18(14), 15039–15053 (2010). [CrossRef] [PubMed]
  24. S. W. Lee, S. L. Chuang, and C. S. Lee, “Normal modes in an overmoded circular waveguide coated with lossy material,” IEEE Trans. Microw. Theory Tech. 34(7), 773–785 (1986). [CrossRef]
  25. S. L. Chuang, “A coupled-mode formulation by reciprocity and a variational principle,” J. Lightwave Technol. 5(1), 5–15 (1987). [CrossRef]
  26. S. L. Chuang, Physics of Optoelectronic Devices, 1st ed. (Wiley, 1995), Appendix H.
  27. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 2000).
  28. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1989).
  29. S. W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron. 45(8), 1014–1023 (2009). [CrossRef]
  30. R. S. Elliott, Antenna Theory and Design (Prentice-Hall, 1981)
  31. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett. 33(11), 1261–1263 (2008). [CrossRef] [PubMed]
  32. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000). [CrossRef]
  33. E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces,” Appl. Phys. Lett. 60(3), 371–373 (1992). [CrossRef]
  34. Y. Zou, J. S. Osinski, P. Grodzinski, P. Dapkus, W. C. Rideout, W. F. Sharfin, J. Schlafer, and F. D. Crawford, “Experimental study of Auger recombination, gain, and temperature sensitivity of 1.5 μm compressively strained semiconductor lasers,” IEEE J. Quantum Electron. 29(6), 1565–1575 (1993). [CrossRef]
  35. S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 2009), Chap. 4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited